Elliptic Cohomology
The aim of this work is to construct a cohomology theory, and evaluate it on classifying spaces BG of finite groups G. This class of spaces is important, since (using ideas borrowed from `Monstrous Moonshine') it is possible to give a bundle-theoretic definition of EU-(BG).
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Thomas, Charles B |
description | The aim of this work is to construct a cohomology theory, and evaluate it on classifying spaces BG of finite groups G. This class of spaces is important, since (using ideas borrowed from `Monstrous Moonshine') it is possible to give a bundle-theoretic definition of EU-(BG). |
doi_str_mv | 10.1007/b115001 |
format | Book |
fullrecord | <record><control><sourceid>proquest_askew</sourceid><recordid>TN_cdi_askewsholts_vlebooks_9780306469695</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC196814</sourcerecordid><originalsourceid>FETCH-LOGICAL-a39759-a501e9f98903854556f87cd260ad2265bd20f0c4c957370423bdd0a035ff1d623</originalsourceid><addsrcrecordid>eNqF0MtKxDAUBuCIKCO1uPAF3KgIjp40t2appV5gwI24DWmTTuvESW3qiG9vx85CYcBsDoGP_1wQOsJwhQHEdYExA8A7KJYiBQKccskl2_31BynYPpoIEAJTTiYoDuEVhocpY4QeoOPcuabtm_Ik87V_887Pvw7RXqVdsPGmRujlLn_OHqazp_vH7GY21WSIlVPNAFtZyVQCSdkQyKtUlCbhoE2ScFaYBCooaSmZIAJoQgpjQANhVYUNT0iELsZgHRb2M9Te9UGtnC28XwT1Z6nBno42tF2znNtOjQqDWh9DbY4xuMstTndl3azsNn4-8rbz7x829Oqne2mXfaedym8znjK2nj1CZ_9ILHmKKfkGkilysg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>book</recordtype><pqid>EBC196814</pqid></control><display><type>book</type><title>Elliptic Cohomology</title><source>Springer Books</source><creator>Thomas, Charles B</creator><creatorcontrib>Thomas, Charles B ; SpringerLink (Online service)</creatorcontrib><description>The aim of this work is to construct a cohomology theory, and evaluate it on classifying spaces BG of finite groups G. This class of spaces is important, since (using ideas borrowed from `Monstrous Moonshine') it is possible to give a bundle-theoretic definition of EU-(BG).</description><edition>1</edition><identifier>ISBN: 9780306460975</identifier><identifier>ISBN: 0306460971</identifier><identifier>ISBN: 147578757X</identifier><identifier>ISBN: 9781475787573</identifier><identifier>ISBN: 1475787588</identifier><identifier>ISBN: 9781475787580</identifier><identifier>EISBN: 9780306469695</identifier><identifier>EISBN: 0306469693</identifier><identifier>DOI: 10.1007/b115001</identifier><identifier>OCLC: 70771463</identifier><identifier>OCLC: 1058399078</identifier><language>eng</language><publisher>Boston, MA: Springer</publisher><subject>Geometry ; Homology theory ; Mathematics ; Mathematics and Statistics ; Number Theory ; Theoretical, Mathematical and Computational Physics</subject><creationdate>1999</creationdate><tpages>202</tpages><format>202</format><rights>Kluwer Academic Publishers 1999</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>University Series in Mathematics</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://media.springernature.com/w306/springer-static/cover-hires/book/978-0-306-46969-5</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/b115001$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/b115001$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>306,776,780,782,27902,38232,41418,42487</link.rule.ids></links><search><creatorcontrib>Thomas, Charles B</creatorcontrib><creatorcontrib>SpringerLink (Online service)</creatorcontrib><title>Elliptic Cohomology</title><description>The aim of this work is to construct a cohomology theory, and evaluate it on classifying spaces BG of finite groups G. This class of spaces is important, since (using ideas borrowed from `Monstrous Moonshine') it is possible to give a bundle-theoretic definition of EU-(BG).</description><subject>Geometry</subject><subject>Homology theory</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Number Theory</subject><subject>Theoretical, Mathematical and Computational Physics</subject><isbn>9780306460975</isbn><isbn>0306460971</isbn><isbn>147578757X</isbn><isbn>9781475787573</isbn><isbn>1475787588</isbn><isbn>9781475787580</isbn><isbn>9780306469695</isbn><isbn>0306469693</isbn><fulltext>true</fulltext><rsrctype>book</rsrctype><creationdate>1999</creationdate><recordtype>book</recordtype><sourceid/><recordid>eNqF0MtKxDAUBuCIKCO1uPAF3KgIjp40t2appV5gwI24DWmTTuvESW3qiG9vx85CYcBsDoGP_1wQOsJwhQHEdYExA8A7KJYiBQKccskl2_31BynYPpoIEAJTTiYoDuEVhocpY4QeoOPcuabtm_Ik87V_887Pvw7RXqVdsPGmRujlLn_OHqazp_vH7GY21WSIlVPNAFtZyVQCSdkQyKtUlCbhoE2ScFaYBCooaSmZIAJoQgpjQANhVYUNT0iELsZgHRb2M9Te9UGtnC28XwT1Z6nBno42tF2znNtOjQqDWh9DbY4xuMstTndl3azsNn4-8rbz7x829Oqne2mXfaedym8znjK2nj1CZ_9ILHmKKfkGkilysg</recordid><startdate>1999</startdate><enddate>1999</enddate><creator>Thomas, Charles B</creator><general>Springer</general><general>Springer US</general><scope/></search><sort><creationdate>1999</creationdate><title>Elliptic Cohomology</title><author>Thomas, Charles B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a39759-a501e9f98903854556f87cd260ad2265bd20f0c4c957370423bdd0a035ff1d623</frbrgroupid><rsrctype>books</rsrctype><prefilter>books</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Geometry</topic><topic>Homology theory</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Number Theory</topic><topic>Theoretical, Mathematical and Computational Physics</topic><toplevel>online_resources</toplevel><creatorcontrib>Thomas, Charles B</creatorcontrib><creatorcontrib>SpringerLink (Online service)</creatorcontrib></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thomas, Charles B</au><aucorp>SpringerLink (Online service)</aucorp><format>book</format><genre>book</genre><ristype>BOOK</ristype><btitle>Elliptic Cohomology</btitle><seriestitle>University Series in Mathematics</seriestitle><date>1999</date><risdate>1999</risdate><isbn>9780306460975</isbn><isbn>0306460971</isbn><isbn>147578757X</isbn><isbn>9781475787573</isbn><isbn>1475787588</isbn><isbn>9781475787580</isbn><eisbn>9780306469695</eisbn><eisbn>0306469693</eisbn><abstract>The aim of this work is to construct a cohomology theory, and evaluate it on classifying spaces BG of finite groups G. This class of spaces is important, since (using ideas borrowed from `Monstrous Moonshine') it is possible to give a bundle-theoretic definition of EU-(BG).</abstract><cop>Boston, MA</cop><pub>Springer</pub><doi>10.1007/b115001</doi><oclcid>70771463</oclcid><oclcid>1058399078</oclcid><tpages>202</tpages><edition>1</edition><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISBN: 9780306460975 |
ispartof | |
issn | |
language | eng |
recordid | cdi_askewsholts_vlebooks_9780306469695 |
source | Springer Books |
subjects | Geometry Homology theory Mathematics Mathematics and Statistics Number Theory Theoretical, Mathematical and Computational Physics |
title | Elliptic Cohomology |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T20%3A05%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_askew&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=book&rft.btitle=Elliptic%20Cohomology&rft.au=Thomas,%20Charles%20B&rft.aucorp=SpringerLink%20(Online%20service)&rft.date=1999&rft.isbn=9780306460975&rft.isbn_list=0306460971&rft.isbn_list=147578757X&rft.isbn_list=9781475787573&rft.isbn_list=1475787588&rft.isbn_list=9781475787580&rft_id=info:doi/10.1007/b115001&rft_dat=%3Cproquest_askew%3EEBC196814%3C/proquest_askew%3E%3Curl%3E%3C/url%3E&rft.eisbn=9780306469695&rft.eisbn_list=0306469693&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC196814&rft_id=info:pmid/&rfr_iscdi=true |