Deep Learning Models for Medical Imaging
Deep Learning Models for Medical Imaging explains the concepts of Deep Learning (DL) and its importance in medical imaging and/or healthcare using two different case studies: a) cytology image analysis and b) coronavirus (COVID-19) prediction, screening, and decision-making, using publicly available...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Buch |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Santosh, K. C Das, Nibaran Ghosh, Swarnendu |
description | Deep Learning Models for Medical Imaging explains the concepts of Deep Learning (DL) and its importance in medical imaging and/or healthcare using two different case studies: a) cytology image analysis and b) coronavirus (COVID-19) prediction, screening, and decision-making, using publicly available datasets in their respective experiments. Of many DL models, custom Convolutional Neural Network (CNN), ResNet, InceptionNet and DenseNet are used. The results follow 'with' and 'without' transfer learning (including different optimization solutions), in addition to the use of data augmentation and ensemble networks. DL models for medical imaging are suitable for a wide range of readers starting from early career research scholars, professors/scientists to industrialists. |
doi_str_mv | 10.1016/B978-0-12-823504-1.00002-7 |
format | Book |
fullrecord | <record><control><sourceid>proquest_askew</sourceid><recordid>TN_cdi_askewsholts_vlebooks_9780128236505</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC6721736</sourcerecordid><originalsourceid>FETCH-LOGICAL-a19924-7e3a3f8ecaa1c7a8eb590643a9fea4e8ab7b0988841cb7fec7014ba7d46caee33</originalsourceid><addsrcrecordid>eNpVj8tOwzAQRY0QCCj5h4gNsHDx2I4fSxoKVGrFBrGNJu6klIamxC38PhZlAbMZjc65VxrGLkAMQYC5GXnruOAguZOqEJrDUKSR3B6wLDEBMgFTiOLwz51EOGZnII21xijrT1gW41sKKtBKaXHKru6INvmUsF8v14t81s2pjXnT9fmM5suAbT55x0VC5-yowTZS9rsH7OV-_Fw-8unTw6S8nXIE76XmlhSqxlFAhGDRUV14YbRC3xBqcljbWnjnnIZQ24aCFaBrtHNtAhIpNWDX-2KMK_qKr127jdVnS3XXrWL179fkXu7dTd997Chuqx8t0HrbY1uNR6WxEqwy6hud51gs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>book</recordtype><pqid>EBC6721736</pqid></control><display><type>book</type><title>Deep Learning Models for Medical Imaging</title><source>eBooks on EBSCOhost</source><creator>Santosh, K. C ; Das, Nibaran ; Ghosh, Swarnendu</creator><creatorcontrib>Santosh, K. C ; Das, Nibaran ; Ghosh, Swarnendu</creatorcontrib><description>Deep Learning Models for Medical Imaging explains the concepts of Deep Learning (DL) and its importance in medical imaging and/or healthcare using two different case studies: a) cytology image analysis and b) coronavirus (COVID-19) prediction, screening, and decision-making, using publicly available datasets in their respective experiments. Of many DL models, custom Convolutional Neural Network (CNN), ResNet, InceptionNet and DenseNet are used. The results follow 'with' and 'without' transfer learning (including different optimization solutions), in addition to the use of data augmentation and ensemble networks. DL models for medical imaging are suitable for a wide range of readers starting from early career research scholars, professors/scientists to industrialists.</description><edition>1</edition><identifier>ISBN: 9780128235041</identifier><identifier>ISBN: 0128235047</identifier><identifier>EISBN: 9780128236505</identifier><identifier>EISBN: 0128236507</identifier><identifier>DOI: 10.1016/B978-0-12-823504-1.00002-7</identifier><identifier>OCLC: 1267766379</identifier><language>eng</language><publisher>Chantilly: Elsevier Science & Technology</publisher><subject>Artificial intelligence ; Artificial intelligence-Medical applications ; Diagnostic imaging</subject><creationdate>2021</creationdate><tpages>172</tpages><format>172</format><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Primers in Biomedical Imaging Devices and Systems</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>306,776,780,782,27904</link.rule.ids></links><search><creatorcontrib>Santosh, K. C</creatorcontrib><creatorcontrib>Das, Nibaran</creatorcontrib><creatorcontrib>Ghosh, Swarnendu</creatorcontrib><title>Deep Learning Models for Medical Imaging</title><description>Deep Learning Models for Medical Imaging explains the concepts of Deep Learning (DL) and its importance in medical imaging and/or healthcare using two different case studies: a) cytology image analysis and b) coronavirus (COVID-19) prediction, screening, and decision-making, using publicly available datasets in their respective experiments. Of many DL models, custom Convolutional Neural Network (CNN), ResNet, InceptionNet and DenseNet are used. The results follow 'with' and 'without' transfer learning (including different optimization solutions), in addition to the use of data augmentation and ensemble networks. DL models for medical imaging are suitable for a wide range of readers starting from early career research scholars, professors/scientists to industrialists.</description><subject>Artificial intelligence</subject><subject>Artificial intelligence-Medical applications</subject><subject>Diagnostic imaging</subject><isbn>9780128235041</isbn><isbn>0128235047</isbn><isbn>9780128236505</isbn><isbn>0128236507</isbn><fulltext>true</fulltext><rsrctype>book</rsrctype><creationdate>2021</creationdate><recordtype>book</recordtype><sourceid/><recordid>eNpVj8tOwzAQRY0QCCj5h4gNsHDx2I4fSxoKVGrFBrGNJu6klIamxC38PhZlAbMZjc65VxrGLkAMQYC5GXnruOAguZOqEJrDUKSR3B6wLDEBMgFTiOLwz51EOGZnII21xijrT1gW41sKKtBKaXHKru6INvmUsF8v14t81s2pjXnT9fmM5suAbT55x0VC5-yowTZS9rsH7OV-_Fw-8unTw6S8nXIE76XmlhSqxlFAhGDRUV14YbRC3xBqcljbWnjnnIZQ24aCFaBrtHNtAhIpNWDX-2KMK_qKr127jdVnS3XXrWL179fkXu7dTd997Chuqx8t0HrbY1uNR6WxEqwy6hud51gs</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Santosh, K. C</creator><creator>Das, Nibaran</creator><creator>Ghosh, Swarnendu</creator><general>Elsevier Science & Technology</general><general>Academic Press</general><scope/></search><sort><creationdate>2021</creationdate><title>Deep Learning Models for Medical Imaging</title><author>Santosh, K. C ; Das, Nibaran ; Ghosh, Swarnendu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a19924-7e3a3f8ecaa1c7a8eb590643a9fea4e8ab7b0988841cb7fec7014ba7d46caee33</frbrgroupid><rsrctype>books</rsrctype><prefilter>books</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial intelligence</topic><topic>Artificial intelligence-Medical applications</topic><topic>Diagnostic imaging</topic><toplevel>online_resources</toplevel><creatorcontrib>Santosh, K. C</creatorcontrib><creatorcontrib>Das, Nibaran</creatorcontrib><creatorcontrib>Ghosh, Swarnendu</creatorcontrib></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Santosh, K. C</au><au>Das, Nibaran</au><au>Ghosh, Swarnendu</au><format>book</format><genre>book</genre><ristype>BOOK</ristype><btitle>Deep Learning Models for Medical Imaging</btitle><seriestitle>Primers in Biomedical Imaging Devices and Systems</seriestitle><date>2021</date><risdate>2021</risdate><isbn>9780128235041</isbn><isbn>0128235047</isbn><eisbn>9780128236505</eisbn><eisbn>0128236507</eisbn><abstract>Deep Learning Models for Medical Imaging explains the concepts of Deep Learning (DL) and its importance in medical imaging and/or healthcare using two different case studies: a) cytology image analysis and b) coronavirus (COVID-19) prediction, screening, and decision-making, using publicly available datasets in their respective experiments. Of many DL models, custom Convolutional Neural Network (CNN), ResNet, InceptionNet and DenseNet are used. The results follow 'with' and 'without' transfer learning (including different optimization solutions), in addition to the use of data augmentation and ensemble networks. DL models for medical imaging are suitable for a wide range of readers starting from early career research scholars, professors/scientists to industrialists.</abstract><cop>Chantilly</cop><pub>Elsevier Science & Technology</pub><doi>10.1016/B978-0-12-823504-1.00002-7</doi><oclcid>1267766379</oclcid><tpages>172</tpages><edition>1</edition></addata></record> |
fulltext | fulltext |
identifier | ISBN: 9780128235041 |
ispartof | |
issn | |
language | eng |
recordid | cdi_askewsholts_vlebooks_9780128236505 |
source | eBooks on EBSCOhost |
subjects | Artificial intelligence Artificial intelligence-Medical applications Diagnostic imaging |
title | Deep Learning Models for Medical Imaging |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T06%3A25%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_askew&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=book&rft.btitle=Deep%20Learning%20Models%20for%20Medical%20Imaging&rft.au=Santosh,%20K.%20C&rft.date=2021&rft.isbn=9780128235041&rft.isbn_list=0128235047&rft_id=info:doi/10.1016/B978-0-12-823504-1.00002-7&rft_dat=%3Cproquest_askew%3EEBC6721736%3C/proquest_askew%3E%3Curl%3E%3C/url%3E&rft.eisbn=9780128236505&rft.eisbn_list=0128236507&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC6721736&rft_id=info:pmid/&rfr_iscdi=true |