Deep Learning Models for Medical Imaging

Deep Learning Models for Medical Imaging explains the concepts of Deep Learning (DL) and its importance in medical imaging and/or healthcare using two different case studies: a) cytology image analysis and b) coronavirus (COVID-19) prediction, screening, and decision-making, using publicly available...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Santosh, K. C, Das, Nibaran, Ghosh, Swarnendu
Format: Buch
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Santosh, K. C
Das, Nibaran
Ghosh, Swarnendu
description Deep Learning Models for Medical Imaging explains the concepts of Deep Learning (DL) and its importance in medical imaging and/or healthcare using two different case studies: a) cytology image analysis and b) coronavirus (COVID-19) prediction, screening, and decision-making, using publicly available datasets in their respective experiments. Of many DL models, custom Convolutional Neural Network (CNN), ResNet, InceptionNet and DenseNet are used. The results follow 'with' and 'without' transfer learning (including different optimization solutions), in addition to the use of data augmentation and ensemble networks. DL models for medical imaging are suitable for a wide range of readers starting from early career research scholars, professors/scientists to industrialists.
doi_str_mv 10.1016/B978-0-12-823504-1.00002-7
format Book
fullrecord <record><control><sourceid>proquest_askew</sourceid><recordid>TN_cdi_askewsholts_vlebooks_9780128236505</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC6721736</sourcerecordid><originalsourceid>FETCH-LOGICAL-a19924-7e3a3f8ecaa1c7a8eb590643a9fea4e8ab7b0988841cb7fec7014ba7d46caee33</originalsourceid><addsrcrecordid>eNpVj8tOwzAQRY0QCCj5h4gNsHDx2I4fSxoKVGrFBrGNJu6klIamxC38PhZlAbMZjc65VxrGLkAMQYC5GXnruOAguZOqEJrDUKSR3B6wLDEBMgFTiOLwz51EOGZnII21xijrT1gW41sKKtBKaXHKru6INvmUsF8v14t81s2pjXnT9fmM5suAbT55x0VC5-yowTZS9rsH7OV-_Fw-8unTw6S8nXIE76XmlhSqxlFAhGDRUV14YbRC3xBqcljbWnjnnIZQ24aCFaBrtHNtAhIpNWDX-2KMK_qKr127jdVnS3XXrWL179fkXu7dTd997Chuqx8t0HrbY1uNR6WxEqwy6hud51gs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>book</recordtype><pqid>EBC6721736</pqid></control><display><type>book</type><title>Deep Learning Models for Medical Imaging</title><source>eBooks on EBSCOhost</source><creator>Santosh, K. C ; Das, Nibaran ; Ghosh, Swarnendu</creator><creatorcontrib>Santosh, K. C ; Das, Nibaran ; Ghosh, Swarnendu</creatorcontrib><description>Deep Learning Models for Medical Imaging explains the concepts of Deep Learning (DL) and its importance in medical imaging and/or healthcare using two different case studies: a) cytology image analysis and b) coronavirus (COVID-19) prediction, screening, and decision-making, using publicly available datasets in their respective experiments. Of many DL models, custom Convolutional Neural Network (CNN), ResNet, InceptionNet and DenseNet are used. The results follow 'with' and 'without' transfer learning (including different optimization solutions), in addition to the use of data augmentation and ensemble networks. DL models for medical imaging are suitable for a wide range of readers starting from early career research scholars, professors/scientists to industrialists.</description><edition>1</edition><identifier>ISBN: 9780128235041</identifier><identifier>ISBN: 0128235047</identifier><identifier>EISBN: 9780128236505</identifier><identifier>EISBN: 0128236507</identifier><identifier>DOI: 10.1016/B978-0-12-823504-1.00002-7</identifier><identifier>OCLC: 1267766379</identifier><language>eng</language><publisher>Chantilly: Elsevier Science &amp; Technology</publisher><subject>Artificial intelligence ; Artificial intelligence-Medical applications ; Diagnostic imaging</subject><creationdate>2021</creationdate><tpages>172</tpages><format>172</format><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Primers in Biomedical Imaging Devices and Systems</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>306,776,780,782,27904</link.rule.ids></links><search><creatorcontrib>Santosh, K. C</creatorcontrib><creatorcontrib>Das, Nibaran</creatorcontrib><creatorcontrib>Ghosh, Swarnendu</creatorcontrib><title>Deep Learning Models for Medical Imaging</title><description>Deep Learning Models for Medical Imaging explains the concepts of Deep Learning (DL) and its importance in medical imaging and/or healthcare using two different case studies: a) cytology image analysis and b) coronavirus (COVID-19) prediction, screening, and decision-making, using publicly available datasets in their respective experiments. Of many DL models, custom Convolutional Neural Network (CNN), ResNet, InceptionNet and DenseNet are used. The results follow 'with' and 'without' transfer learning (including different optimization solutions), in addition to the use of data augmentation and ensemble networks. DL models for medical imaging are suitable for a wide range of readers starting from early career research scholars, professors/scientists to industrialists.</description><subject>Artificial intelligence</subject><subject>Artificial intelligence-Medical applications</subject><subject>Diagnostic imaging</subject><isbn>9780128235041</isbn><isbn>0128235047</isbn><isbn>9780128236505</isbn><isbn>0128236507</isbn><fulltext>true</fulltext><rsrctype>book</rsrctype><creationdate>2021</creationdate><recordtype>book</recordtype><sourceid/><recordid>eNpVj8tOwzAQRY0QCCj5h4gNsHDx2I4fSxoKVGrFBrGNJu6klIamxC38PhZlAbMZjc65VxrGLkAMQYC5GXnruOAguZOqEJrDUKSR3B6wLDEBMgFTiOLwz51EOGZnII21xijrT1gW41sKKtBKaXHKru6INvmUsF8v14t81s2pjXnT9fmM5suAbT55x0VC5-yowTZS9rsH7OV-_Fw-8unTw6S8nXIE76XmlhSqxlFAhGDRUV14YbRC3xBqcljbWnjnnIZQ24aCFaBrtHNtAhIpNWDX-2KMK_qKr127jdVnS3XXrWL179fkXu7dTd997Chuqx8t0HrbY1uNR6WxEqwy6hud51gs</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Santosh, K. C</creator><creator>Das, Nibaran</creator><creator>Ghosh, Swarnendu</creator><general>Elsevier Science &amp; Technology</general><general>Academic Press</general><scope/></search><sort><creationdate>2021</creationdate><title>Deep Learning Models for Medical Imaging</title><author>Santosh, K. C ; Das, Nibaran ; Ghosh, Swarnendu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a19924-7e3a3f8ecaa1c7a8eb590643a9fea4e8ab7b0988841cb7fec7014ba7d46caee33</frbrgroupid><rsrctype>books</rsrctype><prefilter>books</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial intelligence</topic><topic>Artificial intelligence-Medical applications</topic><topic>Diagnostic imaging</topic><toplevel>online_resources</toplevel><creatorcontrib>Santosh, K. C</creatorcontrib><creatorcontrib>Das, Nibaran</creatorcontrib><creatorcontrib>Ghosh, Swarnendu</creatorcontrib></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Santosh, K. C</au><au>Das, Nibaran</au><au>Ghosh, Swarnendu</au><format>book</format><genre>book</genre><ristype>BOOK</ristype><btitle>Deep Learning Models for Medical Imaging</btitle><seriestitle>Primers in Biomedical Imaging Devices and Systems</seriestitle><date>2021</date><risdate>2021</risdate><isbn>9780128235041</isbn><isbn>0128235047</isbn><eisbn>9780128236505</eisbn><eisbn>0128236507</eisbn><abstract>Deep Learning Models for Medical Imaging explains the concepts of Deep Learning (DL) and its importance in medical imaging and/or healthcare using two different case studies: a) cytology image analysis and b) coronavirus (COVID-19) prediction, screening, and decision-making, using publicly available datasets in their respective experiments. Of many DL models, custom Convolutional Neural Network (CNN), ResNet, InceptionNet and DenseNet are used. The results follow 'with' and 'without' transfer learning (including different optimization solutions), in addition to the use of data augmentation and ensemble networks. DL models for medical imaging are suitable for a wide range of readers starting from early career research scholars, professors/scientists to industrialists.</abstract><cop>Chantilly</cop><pub>Elsevier Science &amp; Technology</pub><doi>10.1016/B978-0-12-823504-1.00002-7</doi><oclcid>1267766379</oclcid><tpages>172</tpages><edition>1</edition></addata></record>
fulltext fulltext
identifier ISBN: 9780128235041
ispartof
issn
language eng
recordid cdi_askewsholts_vlebooks_9780128236505
source eBooks on EBSCOhost
subjects Artificial intelligence
Artificial intelligence-Medical applications
Diagnostic imaging
title Deep Learning Models for Medical Imaging
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T06%3A25%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_askew&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=book&rft.btitle=Deep%20Learning%20Models%20for%20Medical%20Imaging&rft.au=Santosh,%20K.%20C&rft.date=2021&rft.isbn=9780128235041&rft.isbn_list=0128235047&rft_id=info:doi/10.1016/B978-0-12-823504-1.00002-7&rft_dat=%3Cproquest_askew%3EEBC6721736%3C/proquest_askew%3E%3Curl%3E%3C/url%3E&rft.eisbn=9780128236505&rft.eisbn_list=0128236507&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC6721736&rft_id=info:pmid/&rfr_iscdi=true