Criticality of Schr\"{o}dinger forms and recurrence of Dirichlet forms
Introducing the notion of extended Schrödinger spaces, we define the criticality and subcriticality of Schrödinger forms in the manner similar to the recurrence and transience of Dirichlet forms. We show that a Schrödinger form is critical (resp. subcritical) if and only if there exists an excessive...
Gespeichert in:
Veröffentlicht in: | Transactions of the American Mathematical Society 2023-06, Vol.376 (6), p.4145 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 6 |
container_start_page | 4145 |
container_title | Transactions of the American Mathematical Society |
container_volume | 376 |
creator | Masayoshi Takeda Toshihiro Uemura |
description | Introducing the notion of extended Schrödinger spaces, we define the criticality and subcriticality of Schrödinger forms in the manner similar to the recurrence and transience of Dirichlet forms. We show that a Schrödinger form is critical (resp. subcritical) if and only if there exists an excessive function of the associated Schrödinger semigroup and the Dirichlet form defined by h-transform of the excessive function is recurrent (resp. transient). We give an analytical condition for the subcriticality of Schrödinger forms in terms of the bottom of spectrum.
We introduce a subclass {\mathcal {K}}_H of the local Kato class and show a Schrödinger form with potential in {\mathcal {K}}_H is critical. Critical Schrödinger forms lead us to critical Hardy-type inequalities. As an example, we treat fractional Schrödinger operators with potential in {\mathcal {K}}_H and reconsider the classical Hardy inequality by our approach. |
doi_str_mv | 10.1090/tran/8865 |
format | Article |
fullrecord | <record><control><sourceid>ams</sourceid><recordid>TN_cdi_ams_primary_10_1090_tran_8865</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1090_tran_8865</sourcerecordid><originalsourceid>FETCH-ams_primary_10_1090_tran_88653</originalsourceid><addsrcrecordid>eNqNzrsKwjAYhuEgCtbD4B0Eca39q21N52px11EIIU1tpAf5E4ci3rsGvQCnjw_e4SFkEcI6hBQCi6INGEviAfFCYMxPWAxD4gHAxk_TaDcmE2NunwsRSzySZ6itlqLWtqddSU-ywsvy2b0K3V4V0rLDxlDRFhSVfCCqVirX7TVqWdXKfosZGZWiNmr-2ylZ5YdzdvRFY_gddSOw5yFwZ-TOyJ1x-2f2Bs3YQWI</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Criticality of Schr\"{o}dinger forms and recurrence of Dirichlet forms</title><source>American Mathematical Society Publications</source><creator>Masayoshi Takeda ; Toshihiro Uemura</creator><creatorcontrib>Masayoshi Takeda ; Toshihiro Uemura</creatorcontrib><description>Introducing the notion of extended Schrödinger spaces, we define the criticality and subcriticality of Schrödinger forms in the manner similar to the recurrence and transience of Dirichlet forms. We show that a Schrödinger form is critical (resp. subcritical) if and only if there exists an excessive function of the associated Schrödinger semigroup and the Dirichlet form defined by h-transform of the excessive function is recurrent (resp. transient). We give an analytical condition for the subcriticality of Schrödinger forms in terms of the bottom of spectrum.
We introduce a subclass {\mathcal {K}}_H of the local Kato class and show a Schrödinger form with potential in {\mathcal {K}}_H is critical. Critical Schrödinger forms lead us to critical Hardy-type inequalities. As an example, we treat fractional Schrödinger operators with potential in {\mathcal {K}}_H and reconsider the classical Hardy inequality by our approach.</description><identifier>ISSN: 0002-9947</identifier><identifier>EISSN: 1088-6850</identifier><identifier>DOI: 10.1090/tran/8865</identifier><language>eng</language><ispartof>Transactions of the American Mathematical Society, 2023-06, Vol.376 (6), p.4145</ispartof><rights>Copyright 2023, American Mathematical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ams.org/tran/2023-376-06/S0002-9947-2023-08865-1/S0002-9947-2023-08865-1.pdf$$EPDF$$P50$$Gams$$H</linktopdf><linktohtml>$$Uhttps://www.ams.org/tran/2023-376-06/S0002-9947-2023-08865-1/$$EHTML$$P50$$Gams$$H</linktohtml><link.rule.ids>68,314,780,784,23327,27923,27924,77607,77617</link.rule.ids></links><search><creatorcontrib>Masayoshi Takeda</creatorcontrib><creatorcontrib>Toshihiro Uemura</creatorcontrib><title>Criticality of Schr\"{o}dinger forms and recurrence of Dirichlet forms</title><title>Transactions of the American Mathematical Society</title><description>Introducing the notion of extended Schrödinger spaces, we define the criticality and subcriticality of Schrödinger forms in the manner similar to the recurrence and transience of Dirichlet forms. We show that a Schrödinger form is critical (resp. subcritical) if and only if there exists an excessive function of the associated Schrödinger semigroup and the Dirichlet form defined by h-transform of the excessive function is recurrent (resp. transient). We give an analytical condition for the subcriticality of Schrödinger forms in terms of the bottom of spectrum.
We introduce a subclass {\mathcal {K}}_H of the local Kato class and show a Schrödinger form with potential in {\mathcal {K}}_H is critical. Critical Schrödinger forms lead us to critical Hardy-type inequalities. As an example, we treat fractional Schrödinger operators with potential in {\mathcal {K}}_H and reconsider the classical Hardy inequality by our approach.</description><issn>0002-9947</issn><issn>1088-6850</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqNzrsKwjAYhuEgCtbD4B0Eca39q21N52px11EIIU1tpAf5E4ci3rsGvQCnjw_e4SFkEcI6hBQCi6INGEviAfFCYMxPWAxD4gHAxk_TaDcmE2NunwsRSzySZ6itlqLWtqddSU-ywsvy2b0K3V4V0rLDxlDRFhSVfCCqVirX7TVqWdXKfosZGZWiNmr-2ylZ5YdzdvRFY_gddSOw5yFwZ-TOyJ1x-2f2Bs3YQWI</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Masayoshi Takeda</creator><creator>Toshihiro Uemura</creator><scope/></search><sort><creationdate>20230601</creationdate><title>Criticality of Schr\"{o}dinger forms and recurrence of Dirichlet forms</title><author>Masayoshi Takeda ; Toshihiro Uemura</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ams_primary_10_1090_tran_88653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Masayoshi Takeda</creatorcontrib><creatorcontrib>Toshihiro Uemura</creatorcontrib><jtitle>Transactions of the American Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Masayoshi Takeda</au><au>Toshihiro Uemura</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Criticality of Schr\"{o}dinger forms and recurrence of Dirichlet forms</atitle><jtitle>Transactions of the American Mathematical Society</jtitle><date>2023-06-01</date><risdate>2023</risdate><volume>376</volume><issue>6</issue><spage>4145</spage><pages>4145-</pages><issn>0002-9947</issn><eissn>1088-6850</eissn><abstract>Introducing the notion of extended Schrödinger spaces, we define the criticality and subcriticality of Schrödinger forms in the manner similar to the recurrence and transience of Dirichlet forms. We show that a Schrödinger form is critical (resp. subcritical) if and only if there exists an excessive function of the associated Schrödinger semigroup and the Dirichlet form defined by h-transform of the excessive function is recurrent (resp. transient). We give an analytical condition for the subcriticality of Schrödinger forms in terms of the bottom of spectrum.
We introduce a subclass {\mathcal {K}}_H of the local Kato class and show a Schrödinger form with potential in {\mathcal {K}}_H is critical. Critical Schrödinger forms lead us to critical Hardy-type inequalities. As an example, we treat fractional Schrödinger operators with potential in {\mathcal {K}}_H and reconsider the classical Hardy inequality by our approach.</abstract><doi>10.1090/tran/8865</doi><tpages>27</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-9947 |
ispartof | Transactions of the American Mathematical Society, 2023-06, Vol.376 (6), p.4145 |
issn | 0002-9947 1088-6850 |
language | eng |
recordid | cdi_ams_primary_10_1090_tran_8865 |
source | American Mathematical Society Publications |
title | Criticality of Schr\"{o}dinger forms and recurrence of Dirichlet forms |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T11%3A49%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ams&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Criticality%20of%20Schr%5C%22%7Bo%7Ddinger%20forms%20and%20recurrence%20of%20Dirichlet%20forms&rft.jtitle=Transactions%20of%20the%20American%20Mathematical%20Society&rft.au=Masayoshi%20Takeda&rft.date=2023-06-01&rft.volume=376&rft.issue=6&rft.spage=4145&rft.pages=4145-&rft.issn=0002-9947&rft.eissn=1088-6850&rft_id=info:doi/10.1090/tran/8865&rft_dat=%3Cams%3E10_1090_tran_8865%3C/ams%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |