Criticality of Schr\"{o}dinger forms and recurrence of Dirichlet forms

Introducing the notion of extended Schrödinger spaces, we define the criticality and subcriticality of Schrödinger forms in the manner similar to the recurrence and transience of Dirichlet forms. We show that a Schrödinger form is critical (resp. subcritical) if and only if there exists an excessive...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transactions of the American Mathematical Society 2023-06, Vol.376 (6), p.4145
Hauptverfasser: Masayoshi Takeda, Toshihiro Uemura
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page 4145
container_title Transactions of the American Mathematical Society
container_volume 376
creator Masayoshi Takeda
Toshihiro Uemura
description Introducing the notion of extended Schrödinger spaces, we define the criticality and subcriticality of Schrödinger forms in the manner similar to the recurrence and transience of Dirichlet forms. We show that a Schrödinger form is critical (resp. subcritical) if and only if there exists an excessive function of the associated Schrödinger semigroup and the Dirichlet form defined by h-transform of the excessive function is recurrent (resp. transient). We give an analytical condition for the subcriticality of Schrödinger forms in terms of the bottom of spectrum. We introduce a subclass {\mathcal {K}}_H of the local Kato class and show a Schrödinger form with potential in {\mathcal {K}}_H is critical. Critical Schrödinger forms lead us to critical Hardy-type inequalities. As an example, we treat fractional Schrödinger operators with potential in {\mathcal {K}}_H and reconsider the classical Hardy inequality by our approach.
doi_str_mv 10.1090/tran/8865
format Article
fullrecord <record><control><sourceid>ams</sourceid><recordid>TN_cdi_ams_primary_10_1090_tran_8865</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1090_tran_8865</sourcerecordid><originalsourceid>FETCH-ams_primary_10_1090_tran_88653</originalsourceid><addsrcrecordid>eNqNzrsKwjAYhuEgCtbD4B0Eca39q21N52px11EIIU1tpAf5E4ci3rsGvQCnjw_e4SFkEcI6hBQCi6INGEviAfFCYMxPWAxD4gHAxk_TaDcmE2NunwsRSzySZ6itlqLWtqddSU-ywsvy2b0K3V4V0rLDxlDRFhSVfCCqVirX7TVqWdXKfosZGZWiNmr-2ylZ5YdzdvRFY_gddSOw5yFwZ-TOyJ1x-2f2Bs3YQWI</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Criticality of Schr\"{o}dinger forms and recurrence of Dirichlet forms</title><source>American Mathematical Society Publications</source><creator>Masayoshi Takeda ; Toshihiro Uemura</creator><creatorcontrib>Masayoshi Takeda ; Toshihiro Uemura</creatorcontrib><description>Introducing the notion of extended Schrödinger spaces, we define the criticality and subcriticality of Schrödinger forms in the manner similar to the recurrence and transience of Dirichlet forms. We show that a Schrödinger form is critical (resp. subcritical) if and only if there exists an excessive function of the associated Schrödinger semigroup and the Dirichlet form defined by h-transform of the excessive function is recurrent (resp. transient). We give an analytical condition for the subcriticality of Schrödinger forms in terms of the bottom of spectrum. We introduce a subclass {\mathcal {K}}_H of the local Kato class and show a Schrödinger form with potential in {\mathcal {K}}_H is critical. Critical Schrödinger forms lead us to critical Hardy-type inequalities. As an example, we treat fractional Schrödinger operators with potential in {\mathcal {K}}_H and reconsider the classical Hardy inequality by our approach.</description><identifier>ISSN: 0002-9947</identifier><identifier>EISSN: 1088-6850</identifier><identifier>DOI: 10.1090/tran/8865</identifier><language>eng</language><ispartof>Transactions of the American Mathematical Society, 2023-06, Vol.376 (6), p.4145</ispartof><rights>Copyright 2023, American Mathematical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ams.org/tran/2023-376-06/S0002-9947-2023-08865-1/S0002-9947-2023-08865-1.pdf$$EPDF$$P50$$Gams$$H</linktopdf><linktohtml>$$Uhttps://www.ams.org/tran/2023-376-06/S0002-9947-2023-08865-1/$$EHTML$$P50$$Gams$$H</linktohtml><link.rule.ids>68,314,780,784,23327,27923,27924,77607,77617</link.rule.ids></links><search><creatorcontrib>Masayoshi Takeda</creatorcontrib><creatorcontrib>Toshihiro Uemura</creatorcontrib><title>Criticality of Schr\"{o}dinger forms and recurrence of Dirichlet forms</title><title>Transactions of the American Mathematical Society</title><description>Introducing the notion of extended Schrödinger spaces, we define the criticality and subcriticality of Schrödinger forms in the manner similar to the recurrence and transience of Dirichlet forms. We show that a Schrödinger form is critical (resp. subcritical) if and only if there exists an excessive function of the associated Schrödinger semigroup and the Dirichlet form defined by h-transform of the excessive function is recurrent (resp. transient). We give an analytical condition for the subcriticality of Schrödinger forms in terms of the bottom of spectrum. We introduce a subclass {\mathcal {K}}_H of the local Kato class and show a Schrödinger form with potential in {\mathcal {K}}_H is critical. Critical Schrödinger forms lead us to critical Hardy-type inequalities. As an example, we treat fractional Schrödinger operators with potential in {\mathcal {K}}_H and reconsider the classical Hardy inequality by our approach.</description><issn>0002-9947</issn><issn>1088-6850</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqNzrsKwjAYhuEgCtbD4B0Eca39q21N52px11EIIU1tpAf5E4ci3rsGvQCnjw_e4SFkEcI6hBQCi6INGEviAfFCYMxPWAxD4gHAxk_TaDcmE2NunwsRSzySZ6itlqLWtqddSU-ywsvy2b0K3V4V0rLDxlDRFhSVfCCqVirX7TVqWdXKfosZGZWiNmr-2ylZ5YdzdvRFY_gddSOw5yFwZ-TOyJ1x-2f2Bs3YQWI</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Masayoshi Takeda</creator><creator>Toshihiro Uemura</creator><scope/></search><sort><creationdate>20230601</creationdate><title>Criticality of Schr\"{o}dinger forms and recurrence of Dirichlet forms</title><author>Masayoshi Takeda ; Toshihiro Uemura</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ams_primary_10_1090_tran_88653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Masayoshi Takeda</creatorcontrib><creatorcontrib>Toshihiro Uemura</creatorcontrib><jtitle>Transactions of the American Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Masayoshi Takeda</au><au>Toshihiro Uemura</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Criticality of Schr\"{o}dinger forms and recurrence of Dirichlet forms</atitle><jtitle>Transactions of the American Mathematical Society</jtitle><date>2023-06-01</date><risdate>2023</risdate><volume>376</volume><issue>6</issue><spage>4145</spage><pages>4145-</pages><issn>0002-9947</issn><eissn>1088-6850</eissn><abstract>Introducing the notion of extended Schrödinger spaces, we define the criticality and subcriticality of Schrödinger forms in the manner similar to the recurrence and transience of Dirichlet forms. We show that a Schrödinger form is critical (resp. subcritical) if and only if there exists an excessive function of the associated Schrödinger semigroup and the Dirichlet form defined by h-transform of the excessive function is recurrent (resp. transient). We give an analytical condition for the subcriticality of Schrödinger forms in terms of the bottom of spectrum. We introduce a subclass {\mathcal {K}}_H of the local Kato class and show a Schrödinger form with potential in {\mathcal {K}}_H is critical. Critical Schrödinger forms lead us to critical Hardy-type inequalities. As an example, we treat fractional Schrödinger operators with potential in {\mathcal {K}}_H and reconsider the classical Hardy inequality by our approach.</abstract><doi>10.1090/tran/8865</doi><tpages>27</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0002-9947
ispartof Transactions of the American Mathematical Society, 2023-06, Vol.376 (6), p.4145
issn 0002-9947
1088-6850
language eng
recordid cdi_ams_primary_10_1090_tran_8865
source American Mathematical Society Publications
title Criticality of Schr\"{o}dinger forms and recurrence of Dirichlet forms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T11%3A49%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ams&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Criticality%20of%20Schr%5C%22%7Bo%7Ddinger%20forms%20and%20recurrence%20of%20Dirichlet%20forms&rft.jtitle=Transactions%20of%20the%20American%20Mathematical%20Society&rft.au=Masayoshi%20Takeda&rft.date=2023-06-01&rft.volume=376&rft.issue=6&rft.spage=4145&rft.pages=4145-&rft.issn=0002-9947&rft.eissn=1088-6850&rft_id=info:doi/10.1090/tran/8865&rft_dat=%3Cams%3E10_1090_tran_8865%3C/ams%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true