Supercritical SDEs driven by multiplicative stable-like L\'evy processes

In this paper, we study the following time-dependent stochastic differential equation (SDE) in \mathbb {R}^d: \begin{equation*} \mathrm {d} X_{t}= \sigma (t, X_{t-}) \mathrm {d} Z_t + b(t, X_{t})\mathrm {d} t, \quad X_{0}=x\in \mathbb {R}^d, \end{equation*} where Z is a d-dimensional non-degenerate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transactions of the American Mathematical Society 2021-11, Vol.374 (11), p.7621
Hauptverfasser: Zhen-Qing Chen, Xicheng Zhang, Guohuan Zhao
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 11
container_start_page 7621
container_title Transactions of the American Mathematical Society
container_volume 374
creator Zhen-Qing Chen
Xicheng Zhang
Guohuan Zhao
description In this paper, we study the following time-dependent stochastic differential equation (SDE) in \mathbb {R}^d: \begin{equation*} \mathrm {d} X_{t}= \sigma (t, X_{t-}) \mathrm {d} Z_t + b(t, X_{t})\mathrm {d} t, \quad X_{0}=x\in \mathbb {R}^d, \end{equation*} where Z is a d-dimensional non-degenerate \alpha-stable-like process with \alpha \in (0,2), and uniform in t\geqslant 0, x\mapsto \sigma (t, x): \mathbb {R}^d\to \mathbb {R}^d\otimes \mathbb {R}^d is \beta-order Hölder continuous and uniformly elliptic with \beta \in ( (1-\alpha )^+ , 1), and x\mapsto b(t, x) is \beta-order Hölder continuous. The Lévy measure of the Lévy process Z can be anisotropic or singular with respect to the Lebesgue measure on \mathbb {R}^d and its support can be a proper subset of \mathbb {R}^d. We show in this paper that for every starting point x \in \mathbb {R}^d, the above SDE has a unique weak solution. We further show that the above SDE has a unique strong solution if x\mapsto \sigma (t, x) is Lipschitz continuous and x\mapsto b(t, x) is \beta-order Hölder continuous with \beta \in (1-\alpha /2,1). When \sigma (t, x)=\mathbb {I}_{d\times d}, the d\times d identity matrix, and Z is an arbitrary non-degenerate \alpha-stable process with 0
doi_str_mv 10.1090/tran/8343
format Article
fullrecord <record><control><sourceid>ams</sourceid><recordid>TN_cdi_ams_primary_10_1090_tran_8343</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1090_tran_8343</sourcerecordid><originalsourceid>FETCH-ams_primary_10_1090_tran_83433</originalsourceid><addsrcrecordid>eNqNjrsOgjAYhRujiXgZfIMOJk7IjyCW2UsY3HA0aQrWpFqw6V9IeHsh8QGcTs75zvARsgphG0IKgbOiDlgURyPihcCYn7A9jIkHADs_TePDlMwQX32FmCUeyfLGSFta5VQpNM1PZ6QPq1pZ06KjVaOdMrpHrp8oOlFo6Wv1lvR638i2o8Z-SokocUEmT6FRLn85J-vL-XbMfFEhN1ZVwnY8BD5Y8sGSD5bRn7cvWF1CCA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Supercritical SDEs driven by multiplicative stable-like L\'evy processes</title><source>American Mathematical Society Publications</source><creator>Zhen-Qing Chen ; Xicheng Zhang ; Guohuan Zhao</creator><creatorcontrib>Zhen-Qing Chen ; Xicheng Zhang ; Guohuan Zhao</creatorcontrib><description>In this paper, we study the following time-dependent stochastic differential equation (SDE) in \mathbb {R}^d: \begin{equation*} \mathrm {d} X_{t}= \sigma (t, X_{t-}) \mathrm {d} Z_t + b(t, X_{t})\mathrm {d} t, \quad X_{0}=x\in \mathbb {R}^d, \end{equation*} where Z is a d-dimensional non-degenerate \alpha-stable-like process with \alpha \in (0,2), and uniform in t\geqslant 0, x\mapsto \sigma (t, x): \mathbb {R}^d\to \mathbb {R}^d\otimes \mathbb {R}^d is \beta-order Hölder continuous and uniformly elliptic with \beta \in ( (1-\alpha )^+ , 1), and x\mapsto b(t, x) is \beta-order Hölder continuous. The Lévy measure of the Lévy process Z can be anisotropic or singular with respect to the Lebesgue measure on \mathbb {R}^d and its support can be a proper subset of \mathbb {R}^d. We show in this paper that for every starting point x \in \mathbb {R}^d, the above SDE has a unique weak solution. We further show that the above SDE has a unique strong solution if x\mapsto \sigma (t, x) is Lipschitz continuous and x\mapsto b(t, x) is \beta-order Hölder continuous with \beta \in (1-\alpha /2,1). When \sigma (t, x)=\mathbb {I}_{d\times d}, the d\times d identity matrix, and Z is an arbitrary non-degenerate \alpha-stable process with 0&lt;\alpha &lt;1, our strong well-posedness result in particular gives an affirmative answer to the open problem in a paper by Priola.</description><identifier>ISSN: 0002-9947</identifier><identifier>EISSN: 1088-6850</identifier><identifier>DOI: 10.1090/tran/8343</identifier><language>eng</language><ispartof>Transactions of the American Mathematical Society, 2021-11, Vol.374 (11), p.7621</ispartof><rights>Copyright 2021, by Zhen-Qing Chen, Xicheng Zhang, and Guohuan Zhao</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ams.org/tran/2021-374-11/S0002-9947-2021-08343-9/S0002-9947-2021-08343-9.pdf$$EPDF$$P50$$Gams$$H</linktopdf><linktohtml>$$Uhttps://www.ams.org/tran/2021-374-11/S0002-9947-2021-08343-9/$$EHTML$$P50$$Gams$$H</linktohtml><link.rule.ids>68,314,780,784,23326,27922,27923,77606,77616</link.rule.ids></links><search><creatorcontrib>Zhen-Qing Chen</creatorcontrib><creatorcontrib>Xicheng Zhang</creatorcontrib><creatorcontrib>Guohuan Zhao</creatorcontrib><title>Supercritical SDEs driven by multiplicative stable-like L\'evy processes</title><title>Transactions of the American Mathematical Society</title><description>In this paper, we study the following time-dependent stochastic differential equation (SDE) in \mathbb {R}^d: \begin{equation*} \mathrm {d} X_{t}= \sigma (t, X_{t-}) \mathrm {d} Z_t + b(t, X_{t})\mathrm {d} t, \quad X_{0}=x\in \mathbb {R}^d, \end{equation*} where Z is a d-dimensional non-degenerate \alpha-stable-like process with \alpha \in (0,2), and uniform in t\geqslant 0, x\mapsto \sigma (t, x): \mathbb {R}^d\to \mathbb {R}^d\otimes \mathbb {R}^d is \beta-order Hölder continuous and uniformly elliptic with \beta \in ( (1-\alpha )^+ , 1), and x\mapsto b(t, x) is \beta-order Hölder continuous. The Lévy measure of the Lévy process Z can be anisotropic or singular with respect to the Lebesgue measure on \mathbb {R}^d and its support can be a proper subset of \mathbb {R}^d. We show in this paper that for every starting point x \in \mathbb {R}^d, the above SDE has a unique weak solution. We further show that the above SDE has a unique strong solution if x\mapsto \sigma (t, x) is Lipschitz continuous and x\mapsto b(t, x) is \beta-order Hölder continuous with \beta \in (1-\alpha /2,1). When \sigma (t, x)=\mathbb {I}_{d\times d}, the d\times d identity matrix, and Z is an arbitrary non-degenerate \alpha-stable process with 0&lt;\alpha &lt;1, our strong well-posedness result in particular gives an affirmative answer to the open problem in a paper by Priola.</description><issn>0002-9947</issn><issn>1088-6850</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqNjrsOgjAYhRujiXgZfIMOJk7IjyCW2UsY3HA0aQrWpFqw6V9IeHsh8QGcTs75zvARsgphG0IKgbOiDlgURyPihcCYn7A9jIkHADs_TePDlMwQX32FmCUeyfLGSFta5VQpNM1PZ6QPq1pZ06KjVaOdMrpHrp8oOlFo6Wv1lvR638i2o8Z-SokocUEmT6FRLn85J-vL-XbMfFEhN1ZVwnY8BD5Y8sGSD5bRn7cvWF1CCA</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Zhen-Qing Chen</creator><creator>Xicheng Zhang</creator><creator>Guohuan Zhao</creator><scope/></search><sort><creationdate>20211101</creationdate><title>Supercritical SDEs driven by multiplicative stable-like L\'evy processes</title><author>Zhen-Qing Chen ; Xicheng Zhang ; Guohuan Zhao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ams_primary_10_1090_tran_83433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Zhen-Qing Chen</creatorcontrib><creatorcontrib>Xicheng Zhang</creatorcontrib><creatorcontrib>Guohuan Zhao</creatorcontrib><jtitle>Transactions of the American Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhen-Qing Chen</au><au>Xicheng Zhang</au><au>Guohuan Zhao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Supercritical SDEs driven by multiplicative stable-like L\'evy processes</atitle><jtitle>Transactions of the American Mathematical Society</jtitle><date>2021-11-01</date><risdate>2021</risdate><volume>374</volume><issue>11</issue><spage>7621</spage><pages>7621-</pages><issn>0002-9947</issn><eissn>1088-6850</eissn><abstract>In this paper, we study the following time-dependent stochastic differential equation (SDE) in \mathbb {R}^d: \begin{equation*} \mathrm {d} X_{t}= \sigma (t, X_{t-}) \mathrm {d} Z_t + b(t, X_{t})\mathrm {d} t, \quad X_{0}=x\in \mathbb {R}^d, \end{equation*} where Z is a d-dimensional non-degenerate \alpha-stable-like process with \alpha \in (0,2), and uniform in t\geqslant 0, x\mapsto \sigma (t, x): \mathbb {R}^d\to \mathbb {R}^d\otimes \mathbb {R}^d is \beta-order Hölder continuous and uniformly elliptic with \beta \in ( (1-\alpha )^+ , 1), and x\mapsto b(t, x) is \beta-order Hölder continuous. The Lévy measure of the Lévy process Z can be anisotropic or singular with respect to the Lebesgue measure on \mathbb {R}^d and its support can be a proper subset of \mathbb {R}^d. We show in this paper that for every starting point x \in \mathbb {R}^d, the above SDE has a unique weak solution. We further show that the above SDE has a unique strong solution if x\mapsto \sigma (t, x) is Lipschitz continuous and x\mapsto b(t, x) is \beta-order Hölder continuous with \beta \in (1-\alpha /2,1). When \sigma (t, x)=\mathbb {I}_{d\times d}, the d\times d identity matrix, and Z is an arbitrary non-degenerate \alpha-stable process with 0&lt;\alpha &lt;1, our strong well-posedness result in particular gives an affirmative answer to the open problem in a paper by Priola.</abstract><doi>10.1090/tran/8343</doi><tpages>35</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0002-9947
ispartof Transactions of the American Mathematical Society, 2021-11, Vol.374 (11), p.7621
issn 0002-9947
1088-6850
language eng
recordid cdi_ams_primary_10_1090_tran_8343
source American Mathematical Society Publications
title Supercritical SDEs driven by multiplicative stable-like L\'evy processes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T22%3A34%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ams&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Supercritical%20SDEs%20driven%20by%20multiplicative%20stable-like%20L%5C'evy%20processes&rft.jtitle=Transactions%20of%20the%20American%20Mathematical%20Society&rft.au=Zhen-Qing%20Chen&rft.date=2021-11-01&rft.volume=374&rft.issue=11&rft.spage=7621&rft.pages=7621-&rft.issn=0002-9947&rft.eissn=1088-6850&rft_id=info:doi/10.1090/tran/8343&rft_dat=%3Cams%3E10_1090_tran_8343%3C/ams%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true