Multiplicative chaos and the characteristic polynomial of the CUE: The L^1-phase
In this article we prove that suitable positive powers of the absolute value of the characteristic polynomial of a Haar distributed random unitary matrix converge in law, as the size of the matrix tends to infinity, to a Gaussian multiplicative chaos measure once correctly normalized. We prove this...
Gespeichert in:
Veröffentlicht in: | Transactions of the American Mathematical Society 2020-06, Vol.373 (6), p.3905 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 6 |
container_start_page | 3905 |
container_title | Transactions of the American Mathematical Society |
container_volume | 373 |
creator | Miika Nikula Eero Saksman Christian Webb |
description | In this article we prove that suitable positive powers of the absolute value of the characteristic polynomial of a Haar distributed random unitary matrix converge in law, as the size of the matrix tends to infinity, to a Gaussian multiplicative chaos measure once correctly normalized. We prove this in the whole L^1- or subcritical phase of the chaos measure. |
doi_str_mv | 10.1090/tran/8020 |
format | Article |
fullrecord | <record><control><sourceid>ams</sourceid><recordid>TN_cdi_ams_primary_10_1090_tran_8020</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1090_tran_8020</sourcerecordid><originalsourceid>FETCH-LOGICAL-a114t-3b9198c8b9b250215694f2d155e6ee9f3f2fa72f81adf3544e252311e6882753</originalsourceid><addsrcrecordid>eNotkE1PhDAURRujiTi68B-wcIvzXqHQujNkHE0wusCt5AFtqOErtJrMv3cYXd17kpu7OIzdItwjKNj6hcatBA5nLECQMkqlgHMWAACPlEqyS3bl3NcRIZFpwN5fv3tv59425O2PDpuOJhfS2Ia-O9FCjdeLdd424Tz1h3EaLPXhZE6D_GP3EJbHUnxiNHfk9DW7MNQ7ffOfG1Y-7cr8OSre9i_5YxERYuKjuFaoZCNrVXMBHEWqEsNbFEKnWisTG24o40YitSYWSaK54DGiTqXkmYg37O7vlgZXzYsdaDlUCNUqoVolVKuE-Bckq053</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Multiplicative chaos and the characteristic polynomial of the CUE: The L^1-phase</title><source>American Mathematical Society Publications</source><creator>Miika Nikula ; Eero Saksman ; Christian Webb</creator><creatorcontrib>Miika Nikula ; Eero Saksman ; Christian Webb</creatorcontrib><description>In this article we prove that suitable positive powers of the absolute value of the characteristic polynomial of a Haar distributed random unitary matrix converge in law, as the size of the matrix tends to infinity, to a Gaussian multiplicative chaos measure once correctly normalized. We prove this in the whole L^1- or subcritical phase of the chaos measure.</description><identifier>ISSN: 0002-9947</identifier><identifier>EISSN: 1088-6850</identifier><identifier>DOI: 10.1090/tran/8020</identifier><language>eng</language><ispartof>Transactions of the American Mathematical Society, 2020-06, Vol.373 (6), p.3905</ispartof><rights>Copyright 2020, American Mathematical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://www.ams.org/tran/2020-373-06/S0002-9947-2020-08020-9/S0002-9947-2020-08020-9.pdf$$EPDF$$P50$$Gams$$H</linktopdf><linktohtml>$$Uhttp://www.ams.org/tran/2020-373-06/S0002-9947-2020-08020-9/$$EHTML$$P50$$Gams$$H</linktohtml><link.rule.ids>68,314,777,781,23309,27905,27906,77585,77595</link.rule.ids></links><search><creatorcontrib>Miika Nikula</creatorcontrib><creatorcontrib>Eero Saksman</creatorcontrib><creatorcontrib>Christian Webb</creatorcontrib><title>Multiplicative chaos and the characteristic polynomial of the CUE: The L^1-phase</title><title>Transactions of the American Mathematical Society</title><description>In this article we prove that suitable positive powers of the absolute value of the characteristic polynomial of a Haar distributed random unitary matrix converge in law, as the size of the matrix tends to infinity, to a Gaussian multiplicative chaos measure once correctly normalized. We prove this in the whole L^1- or subcritical phase of the chaos measure.</description><issn>0002-9947</issn><issn>1088-6850</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNotkE1PhDAURRujiTi68B-wcIvzXqHQujNkHE0wusCt5AFtqOErtJrMv3cYXd17kpu7OIzdItwjKNj6hcatBA5nLECQMkqlgHMWAACPlEqyS3bl3NcRIZFpwN5fv3tv59425O2PDpuOJhfS2Ia-O9FCjdeLdd424Tz1h3EaLPXhZE6D_GP3EJbHUnxiNHfk9DW7MNQ7ffOfG1Y-7cr8OSre9i_5YxERYuKjuFaoZCNrVXMBHEWqEsNbFEKnWisTG24o40YitSYWSaK54DGiTqXkmYg37O7vlgZXzYsdaDlUCNUqoVolVKuE-Bckq053</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Miika Nikula</creator><creator>Eero Saksman</creator><creator>Christian Webb</creator><scope/></search><sort><creationdate>20200601</creationdate><title>Multiplicative chaos and the characteristic polynomial of the CUE: The L^1-phase</title><author>Miika Nikula ; Eero Saksman ; Christian Webb</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a114t-3b9198c8b9b250215694f2d155e6ee9f3f2fa72f81adf3544e252311e6882753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Miika Nikula</creatorcontrib><creatorcontrib>Eero Saksman</creatorcontrib><creatorcontrib>Christian Webb</creatorcontrib><jtitle>Transactions of the American Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Miika Nikula</au><au>Eero Saksman</au><au>Christian Webb</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiplicative chaos and the characteristic polynomial of the CUE: The L^1-phase</atitle><jtitle>Transactions of the American Mathematical Society</jtitle><date>2020-06-01</date><risdate>2020</risdate><volume>373</volume><issue>6</issue><spage>3905</spage><pages>3905-</pages><issn>0002-9947</issn><eissn>1088-6850</eissn><abstract>In this article we prove that suitable positive powers of the absolute value of the characteristic polynomial of a Haar distributed random unitary matrix converge in law, as the size of the matrix tends to infinity, to a Gaussian multiplicative chaos measure once correctly normalized. We prove this in the whole L^1- or subcritical phase of the chaos measure.</abstract><doi>10.1090/tran/8020</doi><tpages>61</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-9947 |
ispartof | Transactions of the American Mathematical Society, 2020-06, Vol.373 (6), p.3905 |
issn | 0002-9947 1088-6850 |
language | eng |
recordid | cdi_ams_primary_10_1090_tran_8020 |
source | American Mathematical Society Publications |
title | Multiplicative chaos and the characteristic polynomial of the CUE: The L^1-phase |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T03%3A20%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ams&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiplicative%20chaos%20and%20the%20characteristic%20polynomial%20of%20the%20CUE:%20The%20L%5E1-phase&rft.jtitle=Transactions%20of%20the%20American%20Mathematical%20Society&rft.au=Miika%20Nikula&rft.date=2020-06-01&rft.volume=373&rft.issue=6&rft.spage=3905&rft.pages=3905-&rft.issn=0002-9947&rft.eissn=1088-6850&rft_id=info:doi/10.1090/tran/8020&rft_dat=%3Cams%3E10_1090_tran_8020%3C/ams%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |