Asymptotic stability for odd perturbations of the stationary kink in the variable-speed \phi^4 model

We consider the \phi ^4 model in one space dimension with propagation speeds that are small deviations from a constant function. In the constant-speed case, a stationary solution called the kink is known explicitly, and the recent work of Kowalczyk, Martel, and Muñoz established the asymptotic stabi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transactions of the American Mathematical Society 2018-10, Vol.370 (10), p.7437
1. Verfasser: Stanley Snelson
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 10
container_start_page 7437
container_title Transactions of the American Mathematical Society
container_volume 370
creator Stanley Snelson
description We consider the \phi ^4 model in one space dimension with propagation speeds that are small deviations from a constant function. In the constant-speed case, a stationary solution called the kink is known explicitly, and the recent work of Kowalczyk, Martel, and Muñoz established the asymptotic stability of the kink with respect to odd perturbations in the natural energy space. We show that a stationary kink solution exists also for our class of nonconstant propagation speeds, and extend the asymptotic stability result by taking a perturbative approach to the method of Kowalczyk, Martel, and Muñoz. This requires an understanding of the spectrum of the linearization around the variable-speed kink.
doi_str_mv 10.1090/tran/7300
format Article
fullrecord <record><control><sourceid>ams</sourceid><recordid>TN_cdi_ams_primary_10_1090_tran_7300</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1090_tran_7300</sourcerecordid><originalsourceid>FETCH-ams_primary_10_1090_tran_73003</originalsourceid><addsrcrecordid>eNqNj00KwjAUhIMoWH8W3uAt3FZftWq7FFE8gEsxpCbFp20Tkij09hrxAK6GGT4GPsYmCc4SzHHurWjmmyVih0UJZlm8zlbYZREiLuI8Tzd9NnDu_qmYZuuIya1ra-O1pys4LwqqyLdQagtaSjDK-qcthCfdONAl-JsKWOjCtvCg5gHUfOeXsCSKSsXOKCXhbG50SaHWUlUj1itF5dT4l0M2PexPu2MsaseNpfrzxRPkwYAHAx4Mln9ibyglTIw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Asymptotic stability for odd perturbations of the stationary kink in the variable-speed \phi^4 model</title><source>American Mathematical Society Publications (Freely Accessible)</source><source>JSTOR Mathematics &amp; Statistics</source><source>Jstor Complete Legacy</source><source>American Mathematical Society Publications</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Stanley Snelson</creator><creatorcontrib>Stanley Snelson</creatorcontrib><description>We consider the \phi ^4 model in one space dimension with propagation speeds that are small deviations from a constant function. In the constant-speed case, a stationary solution called the kink is known explicitly, and the recent work of Kowalczyk, Martel, and Muñoz established the asymptotic stability of the kink with respect to odd perturbations in the natural energy space. We show that a stationary kink solution exists also for our class of nonconstant propagation speeds, and extend the asymptotic stability result by taking a perturbative approach to the method of Kowalczyk, Martel, and Muñoz. This requires an understanding of the spectrum of the linearization around the variable-speed kink.</description><identifier>ISSN: 0002-9947</identifier><identifier>EISSN: 1088-6850</identifier><identifier>DOI: 10.1090/tran/7300</identifier><language>eng</language><ispartof>Transactions of the American Mathematical Society, 2018-10, Vol.370 (10), p.7437</ispartof><rights>Copyright 2018, American Mathematical Society</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://www.ams.org/tran/2018-370-10/S0002-9947-2018-07300-7/S0002-9947-2018-07300-7.pdf$$EPDF$$P50$$Gams$$H</linktopdf><linktohtml>$$Uhttp://www.ams.org/tran/2018-370-10/S0002-9947-2018-07300-7/$$EHTML$$P50$$Gams$$H</linktohtml><link.rule.ids>68,69,314,777,781,23305,23309,27905,27906,77585,77587,77595,77597</link.rule.ids></links><search><creatorcontrib>Stanley Snelson</creatorcontrib><title>Asymptotic stability for odd perturbations of the stationary kink in the variable-speed \phi^4 model</title><title>Transactions of the American Mathematical Society</title><description>We consider the \phi ^4 model in one space dimension with propagation speeds that are small deviations from a constant function. In the constant-speed case, a stationary solution called the kink is known explicitly, and the recent work of Kowalczyk, Martel, and Muñoz established the asymptotic stability of the kink with respect to odd perturbations in the natural energy space. We show that a stationary kink solution exists also for our class of nonconstant propagation speeds, and extend the asymptotic stability result by taking a perturbative approach to the method of Kowalczyk, Martel, and Muñoz. This requires an understanding of the spectrum of the linearization around the variable-speed kink.</description><issn>0002-9947</issn><issn>1088-6850</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqNj00KwjAUhIMoWH8W3uAt3FZftWq7FFE8gEsxpCbFp20Tkij09hrxAK6GGT4GPsYmCc4SzHHurWjmmyVih0UJZlm8zlbYZREiLuI8Tzd9NnDu_qmYZuuIya1ra-O1pys4LwqqyLdQagtaSjDK-qcthCfdONAl-JsKWOjCtvCg5gHUfOeXsCSKSsXOKCXhbG50SaHWUlUj1itF5dT4l0M2PexPu2MsaseNpfrzxRPkwYAHAx4Mln9ibyglTIw</recordid><startdate>20181001</startdate><enddate>20181001</enddate><creator>Stanley Snelson</creator><scope/></search><sort><creationdate>20181001</creationdate><title>Asymptotic stability for odd perturbations of the stationary kink in the variable-speed \phi^4 model</title><author>Stanley Snelson</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ams_primary_10_1090_tran_73003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Stanley Snelson</creatorcontrib><jtitle>Transactions of the American Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stanley Snelson</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Asymptotic stability for odd perturbations of the stationary kink in the variable-speed \phi^4 model</atitle><jtitle>Transactions of the American Mathematical Society</jtitle><date>2018-10-01</date><risdate>2018</risdate><volume>370</volume><issue>10</issue><spage>7437</spage><pages>7437-</pages><issn>0002-9947</issn><eissn>1088-6850</eissn><abstract>We consider the \phi ^4 model in one space dimension with propagation speeds that are small deviations from a constant function. In the constant-speed case, a stationary solution called the kink is known explicitly, and the recent work of Kowalczyk, Martel, and Muñoz established the asymptotic stability of the kink with respect to odd perturbations in the natural energy space. We show that a stationary kink solution exists also for our class of nonconstant propagation speeds, and extend the asymptotic stability result by taking a perturbative approach to the method of Kowalczyk, Martel, and Muñoz. This requires an understanding of the spectrum of the linearization around the variable-speed kink.</abstract><doi>10.1090/tran/7300</doi><tpages>24</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0002-9947
ispartof Transactions of the American Mathematical Society, 2018-10, Vol.370 (10), p.7437
issn 0002-9947
1088-6850
language eng
recordid cdi_ams_primary_10_1090_tran_7300
source American Mathematical Society Publications (Freely Accessible); JSTOR Mathematics & Statistics; Jstor Complete Legacy; American Mathematical Society Publications; EZB-FREE-00999 freely available EZB journals
title Asymptotic stability for odd perturbations of the stationary kink in the variable-speed \phi^4 model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T13%3A36%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ams&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Asymptotic%20stability%20for%20odd%20perturbations%20of%20the%20stationary%20kink%20in%20the%20variable-speed%20%5Cphi%5E4%20model&rft.jtitle=Transactions%20of%20the%20American%20Mathematical%20Society&rft.au=Stanley%20Snelson&rft.date=2018-10-01&rft.volume=370&rft.issue=10&rft.spage=7437&rft.pages=7437-&rft.issn=0002-9947&rft.eissn=1088-6850&rft_id=info:doi/10.1090/tran/7300&rft_dat=%3Cams%3E10_1090_tran_7300%3C/ams%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true