Asymptotic stability for odd perturbations of the stationary kink in the variable-speed \phi^4 model
We consider the \phi ^4 model in one space dimension with propagation speeds that are small deviations from a constant function. In the constant-speed case, a stationary solution called the kink is known explicitly, and the recent work of Kowalczyk, Martel, and Muñoz established the asymptotic stabi...
Gespeichert in:
Veröffentlicht in: | Transactions of the American Mathematical Society 2018-10, Vol.370 (10), p.7437 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 10 |
container_start_page | 7437 |
container_title | Transactions of the American Mathematical Society |
container_volume | 370 |
creator | Stanley Snelson |
description | We consider the \phi ^4 model in one space dimension with propagation speeds that are small deviations from a constant function. In the constant-speed case, a stationary solution called the kink is known explicitly, and the recent work of Kowalczyk, Martel, and Muñoz established the asymptotic stability of the kink with respect to odd perturbations in the natural energy space. We show that a stationary kink solution exists also for our class of nonconstant propagation speeds, and extend the asymptotic stability result by taking a perturbative approach to the method of Kowalczyk, Martel, and Muñoz. This requires an understanding of the spectrum of the linearization around the variable-speed kink. |
doi_str_mv | 10.1090/tran/7300 |
format | Article |
fullrecord | <record><control><sourceid>ams</sourceid><recordid>TN_cdi_ams_primary_10_1090_tran_7300</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1090_tran_7300</sourcerecordid><originalsourceid>FETCH-ams_primary_10_1090_tran_73003</originalsourceid><addsrcrecordid>eNqNj00KwjAUhIMoWH8W3uAt3FZftWq7FFE8gEsxpCbFp20Tkij09hrxAK6GGT4GPsYmCc4SzHHurWjmmyVih0UJZlm8zlbYZREiLuI8Tzd9NnDu_qmYZuuIya1ra-O1pys4LwqqyLdQagtaSjDK-qcthCfdONAl-JsKWOjCtvCg5gHUfOeXsCSKSsXOKCXhbG50SaHWUlUj1itF5dT4l0M2PexPu2MsaseNpfrzxRPkwYAHAx4Mln9ibyglTIw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Asymptotic stability for odd perturbations of the stationary kink in the variable-speed \phi^4 model</title><source>American Mathematical Society Publications (Freely Accessible)</source><source>JSTOR Mathematics & Statistics</source><source>Jstor Complete Legacy</source><source>American Mathematical Society Publications</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Stanley Snelson</creator><creatorcontrib>Stanley Snelson</creatorcontrib><description>We consider the \phi ^4 model in one space dimension with propagation speeds that are small deviations from a constant function. In the constant-speed case, a stationary solution called the kink is known explicitly, and the recent work of Kowalczyk, Martel, and Muñoz established the asymptotic stability of the kink with respect to odd perturbations in the natural energy space. We show that a stationary kink solution exists also for our class of nonconstant propagation speeds, and extend the asymptotic stability result by taking a perturbative approach to the method of Kowalczyk, Martel, and Muñoz. This requires an understanding of the spectrum of the linearization around the variable-speed kink.</description><identifier>ISSN: 0002-9947</identifier><identifier>EISSN: 1088-6850</identifier><identifier>DOI: 10.1090/tran/7300</identifier><language>eng</language><ispartof>Transactions of the American Mathematical Society, 2018-10, Vol.370 (10), p.7437</ispartof><rights>Copyright 2018, American Mathematical Society</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://www.ams.org/tran/2018-370-10/S0002-9947-2018-07300-7/S0002-9947-2018-07300-7.pdf$$EPDF$$P50$$Gams$$H</linktopdf><linktohtml>$$Uhttp://www.ams.org/tran/2018-370-10/S0002-9947-2018-07300-7/$$EHTML$$P50$$Gams$$H</linktohtml><link.rule.ids>68,69,314,777,781,23305,23309,27905,27906,77585,77587,77595,77597</link.rule.ids></links><search><creatorcontrib>Stanley Snelson</creatorcontrib><title>Asymptotic stability for odd perturbations of the stationary kink in the variable-speed \phi^4 model</title><title>Transactions of the American Mathematical Society</title><description>We consider the \phi ^4 model in one space dimension with propagation speeds that are small deviations from a constant function. In the constant-speed case, a stationary solution called the kink is known explicitly, and the recent work of Kowalczyk, Martel, and Muñoz established the asymptotic stability of the kink with respect to odd perturbations in the natural energy space. We show that a stationary kink solution exists also for our class of nonconstant propagation speeds, and extend the asymptotic stability result by taking a perturbative approach to the method of Kowalczyk, Martel, and Muñoz. This requires an understanding of the spectrum of the linearization around the variable-speed kink.</description><issn>0002-9947</issn><issn>1088-6850</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqNj00KwjAUhIMoWH8W3uAt3FZftWq7FFE8gEsxpCbFp20Tkij09hrxAK6GGT4GPsYmCc4SzHHurWjmmyVih0UJZlm8zlbYZREiLuI8Tzd9NnDu_qmYZuuIya1ra-O1pys4LwqqyLdQagtaSjDK-qcthCfdONAl-JsKWOjCtvCg5gHUfOeXsCSKSsXOKCXhbG50SaHWUlUj1itF5dT4l0M2PexPu2MsaseNpfrzxRPkwYAHAx4Mln9ibyglTIw</recordid><startdate>20181001</startdate><enddate>20181001</enddate><creator>Stanley Snelson</creator><scope/></search><sort><creationdate>20181001</creationdate><title>Asymptotic stability for odd perturbations of the stationary kink in the variable-speed \phi^4 model</title><author>Stanley Snelson</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ams_primary_10_1090_tran_73003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Stanley Snelson</creatorcontrib><jtitle>Transactions of the American Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stanley Snelson</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Asymptotic stability for odd perturbations of the stationary kink in the variable-speed \phi^4 model</atitle><jtitle>Transactions of the American Mathematical Society</jtitle><date>2018-10-01</date><risdate>2018</risdate><volume>370</volume><issue>10</issue><spage>7437</spage><pages>7437-</pages><issn>0002-9947</issn><eissn>1088-6850</eissn><abstract>We consider the \phi ^4 model in one space dimension with propagation speeds that are small deviations from a constant function. In the constant-speed case, a stationary solution called the kink is known explicitly, and the recent work of Kowalczyk, Martel, and Muñoz established the asymptotic stability of the kink with respect to odd perturbations in the natural energy space. We show that a stationary kink solution exists also for our class of nonconstant propagation speeds, and extend the asymptotic stability result by taking a perturbative approach to the method of Kowalczyk, Martel, and Muñoz. This requires an understanding of the spectrum of the linearization around the variable-speed kink.</abstract><doi>10.1090/tran/7300</doi><tpages>24</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-9947 |
ispartof | Transactions of the American Mathematical Society, 2018-10, Vol.370 (10), p.7437 |
issn | 0002-9947 1088-6850 |
language | eng |
recordid | cdi_ams_primary_10_1090_tran_7300 |
source | American Mathematical Society Publications (Freely Accessible); JSTOR Mathematics & Statistics; Jstor Complete Legacy; American Mathematical Society Publications; EZB-FREE-00999 freely available EZB journals |
title | Asymptotic stability for odd perturbations of the stationary kink in the variable-speed \phi^4 model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T13%3A36%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ams&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Asymptotic%20stability%20for%20odd%20perturbations%20of%20the%20stationary%20kink%20in%20the%20variable-speed%20%5Cphi%5E4%20model&rft.jtitle=Transactions%20of%20the%20American%20Mathematical%20Society&rft.au=Stanley%20Snelson&rft.date=2018-10-01&rft.volume=370&rft.issue=10&rft.spage=7437&rft.pages=7437-&rft.issn=0002-9947&rft.eissn=1088-6850&rft_id=info:doi/10.1090/tran/7300&rft_dat=%3Cams%3E10_1090_tran_7300%3C/ams%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |