F-thresholds and test ideals of Thom-Sebastiani type polynomials

We provide a formula for F-thresholds of a Thom-Sebastiani type polynomial over a perfect field of prime characteristic. We also compute the first test ideal of Thom-Sebastiani type polynomials. Finally, we apply our results to find hypersurfaces where the log canonical thresholds equal the F-pure t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the American Mathematical Society 2022-09, Vol.150 (9), p.3739
Hauptverfasser: Manuel González Villa, Delio Jaramillo-Velez, Luis Núñez-Betancourt
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 9
container_start_page 3739
container_title Proceedings of the American Mathematical Society
container_volume 150
creator Manuel González Villa
Delio Jaramillo-Velez
Luis Núñez-Betancourt
description We provide a formula for F-thresholds of a Thom-Sebastiani type polynomial over a perfect field of prime characteristic. We also compute the first test ideal of Thom-Sebastiani type polynomials. Finally, we apply our results to find hypersurfaces where the log canonical thresholds equal the F-pure thresholds for infinitely many prime numbers.
doi_str_mv 10.1090/proc/16025
format Article
fullrecord <record><control><sourceid>ams</sourceid><recordid>TN_cdi_ams_primary_10_1090_proc_16025</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1090_proc_16025</sourcerecordid><originalsourceid>FETCH-LOGICAL-a185t-a90b53a21c249b717890335054f7693dc0b41043d765c0f5e5db7106b736c50d3</originalsourceid><addsrcrecordid>eNotj81KxDAYRYMoWEc3PkE2LuN8SZq_nTI4Kgy4mJl1SJuUVtqmNNn07e2oq8OFw4WD0COFZwoGttMc6y2VwMQVKihoTaRm8hoVAMCIMdzcoruUvtdJTakK9LInuZ1DamPvE3ajxzmkjDsfXJ9wbPCpjQM5hsql3Lmxw3mZAp5iv4xx6FbnHt00K8LDPzfovH877T7I4ev9c_d6II5qkYkzUAnuGK1ZaSpFlTbAuQBRNkoa7muoSgol90qKGhoRhF8tkJXishbg-QY9_f26Idlp7gY3L5aCvWTbS7b9zeY_hQxJyQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>F-thresholds and test ideals of Thom-Sebastiani type polynomials</title><source>American Mathematical Society Publications</source><creator>Manuel González Villa ; Delio Jaramillo-Velez ; Luis Núñez-Betancourt</creator><creatorcontrib>Manuel González Villa ; Delio Jaramillo-Velez ; Luis Núñez-Betancourt</creatorcontrib><description>We provide a formula for F-thresholds of a Thom-Sebastiani type polynomial over a perfect field of prime characteristic. We also compute the first test ideal of Thom-Sebastiani type polynomials. Finally, we apply our results to find hypersurfaces where the log canonical thresholds equal the F-pure thresholds for infinitely many prime numbers.</description><identifier>ISSN: 0002-9939</identifier><identifier>EISSN: 1088-6826</identifier><identifier>DOI: 10.1090/proc/16025</identifier><language>eng</language><ispartof>Proceedings of the American Mathematical Society, 2022-09, Vol.150 (9), p.3739</ispartof><rights>Copyright 2022, American Mathematical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ams.org/proc/2022-150-09/S0002-9939-2022-16025-0/S0002-9939-2022-16025-0.pdf$$EPDF$$P50$$Gams$$H</linktopdf><linktohtml>$$Uhttps://www.ams.org/proc/2022-150-09/S0002-9939-2022-16025-0/$$EHTML$$P50$$Gams$$H</linktohtml><link.rule.ids>68,314,780,784,23328,27924,27925,77836,77846</link.rule.ids></links><search><creatorcontrib>Manuel González Villa</creatorcontrib><creatorcontrib>Delio Jaramillo-Velez</creatorcontrib><creatorcontrib>Luis Núñez-Betancourt</creatorcontrib><title>F-thresholds and test ideals of Thom-Sebastiani type polynomials</title><title>Proceedings of the American Mathematical Society</title><description>We provide a formula for F-thresholds of a Thom-Sebastiani type polynomial over a perfect field of prime characteristic. We also compute the first test ideal of Thom-Sebastiani type polynomials. Finally, we apply our results to find hypersurfaces where the log canonical thresholds equal the F-pure thresholds for infinitely many prime numbers.</description><issn>0002-9939</issn><issn>1088-6826</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNotj81KxDAYRYMoWEc3PkE2LuN8SZq_nTI4Kgy4mJl1SJuUVtqmNNn07e2oq8OFw4WD0COFZwoGttMc6y2VwMQVKihoTaRm8hoVAMCIMdzcoruUvtdJTakK9LInuZ1DamPvE3ajxzmkjDsfXJ9wbPCpjQM5hsql3Lmxw3mZAp5iv4xx6FbnHt00K8LDPzfovH877T7I4ev9c_d6II5qkYkzUAnuGK1ZaSpFlTbAuQBRNkoa7muoSgol90qKGhoRhF8tkJXishbg-QY9_f26Idlp7gY3L5aCvWTbS7b9zeY_hQxJyQ</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Manuel González Villa</creator><creator>Delio Jaramillo-Velez</creator><creator>Luis Núñez-Betancourt</creator><scope/></search><sort><creationdate>20220901</creationdate><title>F-thresholds and test ideals of Thom-Sebastiani type polynomials</title><author>Manuel González Villa ; Delio Jaramillo-Velez ; Luis Núñez-Betancourt</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a185t-a90b53a21c249b717890335054f7693dc0b41043d765c0f5e5db7106b736c50d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Manuel González Villa</creatorcontrib><creatorcontrib>Delio Jaramillo-Velez</creatorcontrib><creatorcontrib>Luis Núñez-Betancourt</creatorcontrib><jtitle>Proceedings of the American Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Manuel González Villa</au><au>Delio Jaramillo-Velez</au><au>Luis Núñez-Betancourt</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>F-thresholds and test ideals of Thom-Sebastiani type polynomials</atitle><jtitle>Proceedings of the American Mathematical Society</jtitle><date>2022-09-01</date><risdate>2022</risdate><volume>150</volume><issue>9</issue><spage>3739</spage><pages>3739-</pages><issn>0002-9939</issn><eissn>1088-6826</eissn><abstract>We provide a formula for F-thresholds of a Thom-Sebastiani type polynomial over a perfect field of prime characteristic. We also compute the first test ideal of Thom-Sebastiani type polynomials. Finally, we apply our results to find hypersurfaces where the log canonical thresholds equal the F-pure thresholds for infinitely many prime numbers.</abstract><doi>10.1090/proc/16025</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0002-9939
ispartof Proceedings of the American Mathematical Society, 2022-09, Vol.150 (9), p.3739
issn 0002-9939
1088-6826
language eng
recordid cdi_ams_primary_10_1090_proc_16025
source American Mathematical Society Publications
title F-thresholds and test ideals of Thom-Sebastiani type polynomials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T09%3A00%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ams&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=F-thresholds%20and%20test%20ideals%20of%20Thom-Sebastiani%20type%20polynomials&rft.jtitle=Proceedings%20of%20the%20American%20Mathematical%20Society&rft.au=Manuel%20Gonz%C3%A1lez%20Villa&rft.date=2022-09-01&rft.volume=150&rft.issue=9&rft.spage=3739&rft.pages=3739-&rft.issn=0002-9939&rft.eissn=1088-6826&rft_id=info:doi/10.1090/proc/16025&rft_dat=%3Cams%3E10_1090_proc_16025%3C/ams%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true