Exceptional collections on nonminimal Enriques surfaces
By Orlov’s formula, the derived category of blow up X = \operatorname {Bl}_pX’ \to X’ contains \operatorname {D}^{\mathsf {b}}(X’) as a semiorthogonal component. This raises an interesting question: does there exist a variety X’ such that \operatorname {D}^{\mathsf {b}}(X’) does not admit an excepti...
Gespeichert in:
Veröffentlicht in: | Proceedings of the American Mathematical Society 2022-01, Vol.150 (1), p.5 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | By Orlov’s formula, the derived category of blow up X = \operatorname {Bl}_pX’ \to X’ contains \operatorname {D}^{\mathsf {b}}(X’) as a semiorthogonal component. This raises an interesting question: does there exist a variety X’ such that \operatorname {D}^{\mathsf {b}}(X’) does not admit an exceptional collection of maximal length, but \operatorname {D}^{\mathsf {b}}(X) admits an exceptional collection of maximal length? We give such an example when X’ is a minimal Enriques surface. |
---|---|
ISSN: | 0002-9939 1088-6826 |
DOI: | 10.1090/proc/15760 |