Exceptional collections on nonminimal Enriques surfaces

By Orlov’s formula, the derived category of blow up X = \operatorname {Bl}_pX’ \to X’ contains \operatorname {D}^{\mathsf {b}}(X’) as a semiorthogonal component. This raises an interesting question: does there exist a variety X’ such that \operatorname {D}^{\mathsf {b}}(X’) does not admit an excepti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the American Mathematical Society 2022-01, Vol.150 (1), p.5
1. Verfasser: Yonghwa Cho
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:By Orlov’s formula, the derived category of blow up X = \operatorname {Bl}_pX’ \to X’ contains \operatorname {D}^{\mathsf {b}}(X’) as a semiorthogonal component. This raises an interesting question: does there exist a variety X’ such that \operatorname {D}^{\mathsf {b}}(X’) does not admit an exceptional collection of maximal length, but \operatorname {D}^{\mathsf {b}}(X) admits an exceptional collection of maximal length? We give such an example when X’ is a minimal Enriques surface.
ISSN:0002-9939
1088-6826
DOI:10.1090/proc/15760