On fine Selmer groups and the greatest common divisor of signed and chromatic p-adic L-functions
Let E/\mathbb {Q} be an elliptic curve and p an odd prime where E has good supersingular reduction. Let F_1 denote the characteristic power series of the Pontryagin dual of the fine Selmer group of E over the cyclotomic \mathbb {Z}_p-extension of \mathbb {Q} and let F_2 denote the greatest common di...
Gespeichert in:
Veröffentlicht in: | Proceedings of the American Mathematical Society 2021-08, Vol.149 (8), p.3235 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 8 |
container_start_page | 3235 |
container_title | Proceedings of the American Mathematical Society |
container_volume | 149 |
creator | Antonio Lei R. Sujatha |
description | Let E/\mathbb {Q} be an elliptic curve and p an odd prime where E has good supersingular reduction. Let F_1 denote the characteristic power series of the Pontryagin dual of the fine Selmer group of E over the cyclotomic \mathbb {Z}_p-extension of \mathbb {Q} and let F_2 denote the greatest common divisor of Pollack’s plus and minus p-adic L-functions or Sprung’s sharp and flat p-adic L-functions attached to E, depending on whether a_p(E)=0 or a_p(E)\ne 0. We study a link between the divisors of F_1 and F_2 in the Iwasawa algebra. This gives new insights into problems posed by Greenberg and Pollack–Kurihara on these elements. |
doi_str_mv | 10.1090/proc/15480 |
format | Article |
fullrecord | <record><control><sourceid>ams</sourceid><recordid>TN_cdi_ams_primary_10_1090_proc_15480</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1090_proc_15480</sourcerecordid><originalsourceid>FETCH-LOGICAL-a185t-2581aed5eff72de7884c232aa047eb73eed0518afa2c3fe02f0edfb58f1468693</originalsourceid><addsrcrecordid>eNotkEtLAzEURoMoWKsbf0E2LmNvMq_MUoovGOhCXY-3yU0b6SRDMhX897bV1eHAx7c4jN1KuJfQwmJM0SxkVWo4YzMJWotaq_qczQBAibYt2kt2lfPXQWVbNjP2uQrc-UD8jXYDJb5JcT9mjsHyaUsHJZwoT9zEYYiBW__tc0w8Op79JpA9Lc02xQEnb_go0B7QCbcPZvIx5Gt24XCX6eafc_bx9Pi-fBHd6vl1-dAJlLqahKq0RLIVOdcoS43WpVGFQoSyoXVTEFmopEaHyhSOQDkg69aVdrKsdd0Wc3b394tD7sfkB0w_vYT-mKU_ZulPWYpfnvVXGA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On fine Selmer groups and the greatest common divisor of signed and chromatic p-adic L-functions</title><source>American Mathematical Society Publications</source><creator>Antonio Lei ; R. Sujatha</creator><creatorcontrib>Antonio Lei ; R. Sujatha</creatorcontrib><description>Let E/\mathbb {Q} be an elliptic curve and p an odd prime where E has good supersingular reduction. Let F_1 denote the characteristic power series of the Pontryagin dual of the fine Selmer group of E over the cyclotomic \mathbb {Z}_p-extension of \mathbb {Q} and let F_2 denote the greatest common divisor of Pollack’s plus and minus p-adic L-functions or Sprung’s sharp and flat p-adic L-functions attached to E, depending on whether a_p(E)=0 or a_p(E)\ne 0. We study a link between the divisors of F_1 and F_2 in the Iwasawa algebra. This gives new insights into problems posed by Greenberg and Pollack–Kurihara on these elements.</description><identifier>ISSN: 0002-9939</identifier><identifier>EISSN: 1088-6826</identifier><identifier>DOI: 10.1090/proc/15480</identifier><language>eng</language><ispartof>Proceedings of the American Mathematical Society, 2021-08, Vol.149 (8), p.3235</ispartof><rights>Copyright 2021, American Mathematical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ams.org/proc/2021-149-08/S0002-9939-2021-15480-4/S0002-9939-2021-15480-4.pdf$$EPDF$$P50$$Gams$$H</linktopdf><linktohtml>$$Uhttps://www.ams.org/proc/2021-149-08/S0002-9939-2021-15480-4/$$EHTML$$P50$$Gams$$H</linktohtml><link.rule.ids>68,314,780,784,23328,27924,27925,77836,77846</link.rule.ids></links><search><creatorcontrib>Antonio Lei</creatorcontrib><creatorcontrib>R. Sujatha</creatorcontrib><title>On fine Selmer groups and the greatest common divisor of signed and chromatic p-adic L-functions</title><title>Proceedings of the American Mathematical Society</title><description>Let E/\mathbb {Q} be an elliptic curve and p an odd prime where E has good supersingular reduction. Let F_1 denote the characteristic power series of the Pontryagin dual of the fine Selmer group of E over the cyclotomic \mathbb {Z}_p-extension of \mathbb {Q} and let F_2 denote the greatest common divisor of Pollack’s plus and minus p-adic L-functions or Sprung’s sharp and flat p-adic L-functions attached to E, depending on whether a_p(E)=0 or a_p(E)\ne 0. We study a link between the divisors of F_1 and F_2 in the Iwasawa algebra. This gives new insights into problems posed by Greenberg and Pollack–Kurihara on these elements.</description><issn>0002-9939</issn><issn>1088-6826</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNotkEtLAzEURoMoWKsbf0E2LmNvMq_MUoovGOhCXY-3yU0b6SRDMhX897bV1eHAx7c4jN1KuJfQwmJM0SxkVWo4YzMJWotaq_qczQBAibYt2kt2lfPXQWVbNjP2uQrc-UD8jXYDJb5JcT9mjsHyaUsHJZwoT9zEYYiBW__tc0w8Op79JpA9Lc02xQEnb_go0B7QCbcPZvIx5Gt24XCX6eafc_bx9Pi-fBHd6vl1-dAJlLqahKq0RLIVOdcoS43WpVGFQoSyoXVTEFmopEaHyhSOQDkg69aVdrKsdd0Wc3b394tD7sfkB0w_vYT-mKU_ZulPWYpfnvVXGA</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Antonio Lei</creator><creator>R. Sujatha</creator><scope/></search><sort><creationdate>20210801</creationdate><title>On fine Selmer groups and the greatest common divisor of signed and chromatic p-adic L-functions</title><author>Antonio Lei ; R. Sujatha</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a185t-2581aed5eff72de7884c232aa047eb73eed0518afa2c3fe02f0edfb58f1468693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Antonio Lei</creatorcontrib><creatorcontrib>R. Sujatha</creatorcontrib><jtitle>Proceedings of the American Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Antonio Lei</au><au>R. Sujatha</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On fine Selmer groups and the greatest common divisor of signed and chromatic p-adic L-functions</atitle><jtitle>Proceedings of the American Mathematical Society</jtitle><date>2021-08-01</date><risdate>2021</risdate><volume>149</volume><issue>8</issue><spage>3235</spage><pages>3235-</pages><issn>0002-9939</issn><eissn>1088-6826</eissn><abstract>Let E/\mathbb {Q} be an elliptic curve and p an odd prime where E has good supersingular reduction. Let F_1 denote the characteristic power series of the Pontryagin dual of the fine Selmer group of E over the cyclotomic \mathbb {Z}_p-extension of \mathbb {Q} and let F_2 denote the greatest common divisor of Pollack’s plus and minus p-adic L-functions or Sprung’s sharp and flat p-adic L-functions attached to E, depending on whether a_p(E)=0 or a_p(E)\ne 0. We study a link between the divisors of F_1 and F_2 in the Iwasawa algebra. This gives new insights into problems posed by Greenberg and Pollack–Kurihara on these elements.</abstract><doi>10.1090/proc/15480</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-9939 |
ispartof | Proceedings of the American Mathematical Society, 2021-08, Vol.149 (8), p.3235 |
issn | 0002-9939 1088-6826 |
language | eng |
recordid | cdi_ams_primary_10_1090_proc_15480 |
source | American Mathematical Society Publications |
title | On fine Selmer groups and the greatest common divisor of signed and chromatic p-adic L-functions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T00%3A07%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ams&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20fine%20Selmer%20groups%20and%20the%20greatest%20common%20divisor%20of%20signed%20and%20chromatic%20p-adic%20L-functions&rft.jtitle=Proceedings%20of%20the%20American%20Mathematical%20Society&rft.au=Antonio%20Lei&rft.date=2021-08-01&rft.volume=149&rft.issue=8&rft.spage=3235&rft.pages=3235-&rft.issn=0002-9939&rft.eissn=1088-6826&rft_id=info:doi/10.1090/proc/15480&rft_dat=%3Cams%3E10_1090_proc_15480%3C/ams%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |