Equivalence and stable isomorphism of groupoids, and diagonal-preserving stable isomorphisms of graph C^-algebras and Leavitt path algebras

We prove that ample groupoids with \sigma -compact unit spaces are equivalent if and only if they are stably isomorphic in an appropriate sense, and relate this to Matui's notion of Kakutani equivalence. We use this result to show that diagonal-preserving stable isomorphisms of graph C^*-algebr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the American Mathematical Society 2017-04, Vol.145 (4), p.1581
Hauptverfasser: Toke Meier Carlsen, Efren Ruiz, Aidan Sims
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page 1581
container_title Proceedings of the American Mathematical Society
container_volume 145
creator Toke Meier Carlsen
Efren Ruiz
Aidan Sims
description We prove that ample groupoids with \sigma -compact unit spaces are equivalent if and only if they are stably isomorphic in an appropriate sense, and relate this to Matui's notion of Kakutani equivalence. We use this result to show that diagonal-preserving stable isomorphisms of graph C^*-algebras or Leavitt path algebras give rise to isomorphisms of the groupoids of the associated stabilised graphs. We deduce that the Leavitt path algebras L_{\mathbb{Z}}(E_2) and L_{\mathbb{Z}}(E_{2-}) are not stably ^*-isomorphic.
doi_str_mv 10.1090/proc/13321
format Article
fullrecord <record><control><sourceid>ams</sourceid><recordid>TN_cdi_ams_primary_10_1090_proc_13321</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1090_proc_13321</sourcerecordid><originalsourceid>FETCH-LOGICAL-a185t-89b53d6382058b0b20df2d2b8768aad1819f58ba00f0ebf1ee55ebfe1d228cf43</originalsourceid><addsrcrecordid>eNptkLtOwzAYhS0EEqWw8ARe2DD9bTepPaKqXKRKLLAS_ant1CiJjZ1W4hl4aXqBjeno6FyGj5BrDnccNExiCqsJl1LwEzLioBQrlShPyQgABNNa6nNykfPHznI9nY3I9-Jz47fY2n5lKfaG5gHr1lKfQxdSXPvc0eBok8ImBm_y7aFkPDahx5bFZLNNW983_wzzcYlxTefvDNvG1gnz4WBpceuHgUYc1vQvuSRnDttsr351TN4eFq_zJ7Z8eXye3y8ZclUMTOm6kKaUSkChaqgFGCeMqNWsVIiGK67dLkAAB7Z23Nqi2KnlRgi1clM5JjfHX-xyFZPvMH1VHKo9wWpPsDoQlD_G5Wfq</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Equivalence and stable isomorphism of groupoids, and diagonal-preserving stable isomorphisms of graph C^-algebras and Leavitt path algebras</title><source>American Mathematical Society Publications (Freely Accessible)</source><source>JSTOR Mathematics &amp; Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><source>American Mathematical Society Publications</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Toke Meier Carlsen ; Efren Ruiz ; Aidan Sims</creator><creatorcontrib>Toke Meier Carlsen ; Efren Ruiz ; Aidan Sims</creatorcontrib><description>We prove that ample groupoids with \sigma -compact unit spaces are equivalent if and only if they are stably isomorphic in an appropriate sense, and relate this to Matui's notion of Kakutani equivalence. We use this result to show that diagonal-preserving stable isomorphisms of graph C^*-algebras or Leavitt path algebras give rise to isomorphisms of the groupoids of the associated stabilised graphs. We deduce that the Leavitt path algebras L_{\mathbb{Z}}(E_2) and L_{\mathbb{Z}}(E_{2-}) are not stably ^*-isomorphic.</description><identifier>ISSN: 0002-9939</identifier><identifier>EISSN: 1088-6826</identifier><identifier>DOI: 10.1090/proc/13321</identifier><language>eng</language><ispartof>Proceedings of the American Mathematical Society, 2017-04, Vol.145 (4), p.1581</ispartof><rights>Copyright 2016, American Mathematical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://www.ams.org/proc/2017-145-04/S0002-9939-2016-13321-2/S0002-9939-2016-13321-2.pdf$$EPDF$$P50$$Gams$$H</linktopdf><linktohtml>$$Uhttp://www.ams.org/proc/2017-145-04/S0002-9939-2016-13321-2/$$EHTML$$P50$$Gams$$H</linktohtml><link.rule.ids>68,69,314,780,784,23323,23327,27923,27924,77607,77609,77617,77619</link.rule.ids></links><search><creatorcontrib>Toke Meier Carlsen</creatorcontrib><creatorcontrib>Efren Ruiz</creatorcontrib><creatorcontrib>Aidan Sims</creatorcontrib><title>Equivalence and stable isomorphism of groupoids, and diagonal-preserving stable isomorphisms of graph C^-algebras and Leavitt path algebras</title><title>Proceedings of the American Mathematical Society</title><description>We prove that ample groupoids with \sigma -compact unit spaces are equivalent if and only if they are stably isomorphic in an appropriate sense, and relate this to Matui's notion of Kakutani equivalence. We use this result to show that diagonal-preserving stable isomorphisms of graph C^*-algebras or Leavitt path algebras give rise to isomorphisms of the groupoids of the associated stabilised graphs. We deduce that the Leavitt path algebras L_{\mathbb{Z}}(E_2) and L_{\mathbb{Z}}(E_{2-}) are not stably ^*-isomorphic.</description><issn>0002-9939</issn><issn>1088-6826</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNptkLtOwzAYhS0EEqWw8ARe2DD9bTepPaKqXKRKLLAS_ant1CiJjZ1W4hl4aXqBjeno6FyGj5BrDnccNExiCqsJl1LwEzLioBQrlShPyQgABNNa6nNykfPHznI9nY3I9-Jz47fY2n5lKfaG5gHr1lKfQxdSXPvc0eBok8ImBm_y7aFkPDahx5bFZLNNW983_wzzcYlxTefvDNvG1gnz4WBpceuHgUYc1vQvuSRnDttsr351TN4eFq_zJ7Z8eXye3y8ZclUMTOm6kKaUSkChaqgFGCeMqNWsVIiGK67dLkAAB7Z23Nqi2KnlRgi1clM5JjfHX-xyFZPvMH1VHKo9wWpPsDoQlD_G5Wfq</recordid><startdate>20170401</startdate><enddate>20170401</enddate><creator>Toke Meier Carlsen</creator><creator>Efren Ruiz</creator><creator>Aidan Sims</creator><scope/></search><sort><creationdate>20170401</creationdate><title>Equivalence and stable isomorphism of groupoids, and diagonal-preserving stable isomorphisms of graph C^-algebras and Leavitt path algebras</title><author>Toke Meier Carlsen ; Efren Ruiz ; Aidan Sims</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a185t-89b53d6382058b0b20df2d2b8768aad1819f58ba00f0ebf1ee55ebfe1d228cf43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Toke Meier Carlsen</creatorcontrib><creatorcontrib>Efren Ruiz</creatorcontrib><creatorcontrib>Aidan Sims</creatorcontrib><jtitle>Proceedings of the American Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Toke Meier Carlsen</au><au>Efren Ruiz</au><au>Aidan Sims</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Equivalence and stable isomorphism of groupoids, and diagonal-preserving stable isomorphisms of graph C^-algebras and Leavitt path algebras</atitle><jtitle>Proceedings of the American Mathematical Society</jtitle><date>2017-04-01</date><risdate>2017</risdate><volume>145</volume><issue>4</issue><spage>1581</spage><pages>1581-</pages><issn>0002-9939</issn><eissn>1088-6826</eissn><abstract>We prove that ample groupoids with \sigma -compact unit spaces are equivalent if and only if they are stably isomorphic in an appropriate sense, and relate this to Matui's notion of Kakutani equivalence. We use this result to show that diagonal-preserving stable isomorphisms of graph C^*-algebras or Leavitt path algebras give rise to isomorphisms of the groupoids of the associated stabilised graphs. We deduce that the Leavitt path algebras L_{\mathbb{Z}}(E_2) and L_{\mathbb{Z}}(E_{2-}) are not stably ^*-isomorphic.</abstract><doi>10.1090/proc/13321</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-9939
ispartof Proceedings of the American Mathematical Society, 2017-04, Vol.145 (4), p.1581
issn 0002-9939
1088-6826
language eng
recordid cdi_ams_primary_10_1090_proc_13321
source American Mathematical Society Publications (Freely Accessible); JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing; American Mathematical Society Publications; EZB-FREE-00999 freely available EZB journals
title Equivalence and stable isomorphism of groupoids, and diagonal-preserving stable isomorphisms of graph C^-algebras and Leavitt path algebras
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T12%3A19%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ams&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Equivalence%20and%20stable%20isomorphism%20of%20groupoids,%20and%20diagonal-preserving%20stable%20isomorphisms%20of%20graph%20C%5E-algebras%20and%20Leavitt%20path%20algebras&rft.jtitle=Proceedings%20of%20the%20American%20Mathematical%20Society&rft.au=Toke%20Meier%20Carlsen&rft.date=2017-04-01&rft.volume=145&rft.issue=4&rft.spage=1581&rft.pages=1581-&rft.issn=0002-9939&rft.eissn=1088-6826&rft_id=info:doi/10.1090/proc/13321&rft_dat=%3Cams%3E10_1090_proc_13321%3C/ams%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true