F F -stability of f f -minimal hypersurface
In this paper we study the classification of the ff-minimal hypersurface immersed in the manifold Mn×RM^{n}\times R, where (Mn,g)(M^{n}, g) is an Einstein manifold with positive Ricci curvature. By using the FF functional and FF-stability which were introduced by Huisken and Colding-Minicozzi respec...
Gespeichert in:
Veröffentlicht in: | Proceedings of the American Mathematical Society 2015-04, Vol.143 (8), p.3619-3629 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3629 |
---|---|
container_issue | 8 |
container_start_page | 3619 |
container_title | Proceedings of the American Mathematical Society |
container_volume | 143 |
creator | Sheng, Weimin Yu, Haobin |
description | In this paper we study the classification of the ff-minimal hypersurface immersed in the manifold Mn×RM^{n}\times R, where (Mn,g)(M^{n}, g) is an Einstein manifold with positive Ricci curvature. By using the FF functional and FF-stability which were introduced by Huisken and Colding-Minicozzi respectively, we prove that among all complete ff-minimal hypersurfaces with polynomial volume growth, only Mn×{0}M^{n}\times \{0\} is FF-stable. |
doi_str_mv | 10.1090/proc/12514 |
format | Article |
fullrecord | <record><control><sourceid>ams</sourceid><recordid>TN_cdi_ams_primary_10_1090_proc_12514</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1090_proc_12514</sourcerecordid><originalsourceid>FETCH-ams_primary_10_1090_proc_125143</originalsourceid><addsrcrecordid>eNpjYBAyNNAzNLA00C8oyk_WNzQyNTRhYuA0NLCw0DWzMDJjYeA0MDAw0rW0NLbkYOAqLs4Ccg0tTcw5GbTdFNwUdItLEpMyczJLKhXy0xRAUDc3My8zNzFHIaOyILWouLQoLTE5lYeBNS0xpziVF0pzM6i6uYY4e-gm5hbHFxQB1RdVxhsaxINcEg9ySTzYJcbEqgMAj8o2iA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>F F -stability of f f -minimal hypersurface</title><source>Jstor Complete Legacy</source><source>American Mathematical Society Publications</source><source>American Mathematical Society Publications (Freely Accessible)</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>JSTOR Mathematics & Statistics</source><creator>Sheng, Weimin ; Yu, Haobin</creator><creatorcontrib>Sheng, Weimin ; Yu, Haobin</creatorcontrib><description>In this paper we study the classification of the ff-minimal hypersurface immersed in the manifold Mn×RM^{n}\times R, where (Mn,g)(M^{n}, g) is an Einstein manifold with positive Ricci curvature. By using the FF functional and FF-stability which were introduced by Huisken and Colding-Minicozzi respectively, we prove that among all complete ff-minimal hypersurfaces with polynomial volume growth, only Mn×{0}M^{n}\times \{0\} is FF-stable.</description><identifier>ISSN: 0002-9939</identifier><identifier>EISSN: 1088-6826</identifier><identifier>DOI: 10.1090/proc/12514</identifier><language>eng</language><publisher>Providence, Rhode Island: American Mathematical Society</publisher><subject>Research article</subject><ispartof>Proceedings of the American Mathematical Society, 2015-04, Vol.143 (8), p.3619-3629</ispartof><rights>Copyright 2015 American Mathematical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ams.org/proc/2015-143-08/S0002-9939-2015-12514-2/S0002-9939-2015-12514-2.pdf$$EPDF$$P50$$Gams$$H</linktopdf><linktohtml>$$Uhttps://www.ams.org/proc/2015-143-08/S0002-9939-2015-12514-2/$$EHTML$$P50$$Gams$$H</linktohtml><link.rule.ids>68,69,314,776,780,23303,23307,27901,27902,77578,77580,77588,77590</link.rule.ids></links><search><creatorcontrib>Sheng, Weimin</creatorcontrib><creatorcontrib>Yu, Haobin</creatorcontrib><title>F F -stability of f f -minimal hypersurface</title><title>Proceedings of the American Mathematical Society</title><addtitle>Proc. Amer. Math. Soc</addtitle><description>In this paper we study the classification of the ff-minimal hypersurface immersed in the manifold Mn×RM^{n}\times R, where (Mn,g)(M^{n}, g) is an Einstein manifold with positive Ricci curvature. By using the FF functional and FF-stability which were introduced by Huisken and Colding-Minicozzi respectively, we prove that among all complete ff-minimal hypersurfaces with polynomial volume growth, only Mn×{0}M^{n}\times \{0\} is FF-stable.</description><subject>Research article</subject><issn>0002-9939</issn><issn>1088-6826</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpjYBAyNNAzNLA00C8oyk_WNzQyNTRhYuA0NLCw0DWzMDJjYeA0MDAw0rW0NLbkYOAqLs4Ccg0tTcw5GbTdFNwUdItLEpMyczJLKhXy0xRAUDc3My8zNzFHIaOyILWouLQoLTE5lYeBNS0xpziVF0pzM6i6uYY4e-gm5hbHFxQB1RdVxhsaxINcEg9ySTzYJcbEqgMAj8o2iA</recordid><startdate>20150423</startdate><enddate>20150423</enddate><creator>Sheng, Weimin</creator><creator>Yu, Haobin</creator><general>American Mathematical Society</general><scope/></search><sort><creationdate>20150423</creationdate><title>F F -stability of f f -minimal hypersurface</title><author>Sheng, Weimin ; Yu, Haobin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ams_primary_10_1090_proc_125143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Research article</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sheng, Weimin</creatorcontrib><creatorcontrib>Yu, Haobin</creatorcontrib><jtitle>Proceedings of the American Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sheng, Weimin</au><au>Yu, Haobin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>F F -stability of f f -minimal hypersurface</atitle><jtitle>Proceedings of the American Mathematical Society</jtitle><stitle>Proc. Amer. Math. Soc</stitle><date>2015-04-23</date><risdate>2015</risdate><volume>143</volume><issue>8</issue><spage>3619</spage><epage>3629</epage><pages>3619-3629</pages><issn>0002-9939</issn><eissn>1088-6826</eissn><abstract>In this paper we study the classification of the ff-minimal hypersurface immersed in the manifold Mn×RM^{n}\times R, where (Mn,g)(M^{n}, g) is an Einstein manifold with positive Ricci curvature. By using the FF functional and FF-stability which were introduced by Huisken and Colding-Minicozzi respectively, we prove that among all complete ff-minimal hypersurfaces with polynomial volume growth, only Mn×{0}M^{n}\times \{0\} is FF-stable.</abstract><cop>Providence, Rhode Island</cop><pub>American Mathematical Society</pub><doi>10.1090/proc/12514</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-9939 |
ispartof | Proceedings of the American Mathematical Society, 2015-04, Vol.143 (8), p.3619-3629 |
issn | 0002-9939 1088-6826 |
language | eng |
recordid | cdi_ams_primary_10_1090_proc_12514 |
source | Jstor Complete Legacy; American Mathematical Society Publications; American Mathematical Society Publications (Freely Accessible); Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; JSTOR Mathematics & Statistics |
subjects | Research article |
title | F F -stability of f f -minimal hypersurface |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T04%3A20%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ams&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=F%20F%20-stability%20of%20f%20f%20-minimal%20hypersurface&rft.jtitle=Proceedings%20of%20the%20American%20Mathematical%20Society&rft.au=Sheng,%20Weimin&rft.date=2015-04-23&rft.volume=143&rft.issue=8&rft.spage=3619&rft.epage=3629&rft.pages=3619-3629&rft.issn=0002-9939&rft.eissn=1088-6826&rft_id=info:doi/10.1090/proc/12514&rft_dat=%3Cams%3E10_1090_proc_12514%3C/ams%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |