A first-order Fourier integrator for the nonlinear Schr\"odinger equation on \mathbb{T} without loss of regularity
In this paper, we propose a first-order Fourier integrator for solving the cubic nonlinear Schrödinger equation in one dimension. The scheme is explicit and can be implemented using the fast Fourier transform. By a rigorous analysis, we prove that the new scheme provides the first-order accuracy in...
Gespeichert in:
Veröffentlicht in: | Mathematics of computation 2022-05, Vol.91 (335), p.1213 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 335 |
container_start_page | 1213 |
container_title | Mathematics of computation |
container_volume | 91 |
creator | Yifei Wu Fangyan Yao |
description | In this paper, we propose a first-order Fourier integrator for solving the cubic nonlinear Schrödinger equation in one dimension. The scheme is explicit and can be implemented using the fast Fourier transform. By a rigorous analysis, we prove that the new scheme provides the first-order accuracy in H^\gamma for any initial data belonging to H^\gamma, for any \gamma >\frac 32. That is, up to some fixed time T, there exists some constant C=C(\|u\|_{L^\infty ([0,T]; H^{\gamma })})>0, such that \begin{equation*} \|u^n-u(t_n)\|_{H^\gamma (\mathbb {T})}\le C \tau , \end{equation*} where u^n denotes the numerical solution at t_n=n\tau. Moreover, the mass of the numerical solution M(u^n) verifies \begin{equation*} \left |M(u^n)-M(u_0)\right |\le C\tau ^5. \end{equation*} In particular, our scheme does not cost any additional derivative for the first-order convergence and the numerical solution obeys the almost mass conservation law. Furthermore, if u_0\in H^1(\mathbb {T}), we rigorously prove that \begin{equation*} \|u^n-u(t_n)\|_{H^1(\mathbb {T})}\le C\tau ^{\frac 12-}, \end{equation*} where C= C(\|u_0\|_{H^1(\mathbb {T})})>0. |
doi_str_mv | 10.1090/mcom/3705 |
format | Article |
fullrecord | <record><control><sourceid>ams</sourceid><recordid>TN_cdi_ams_primary_10_1090_mcom_3705</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1090_mcom_3705</sourcerecordid><originalsourceid>FETCH-ams_primary_10_1090_mcom_37053</originalsourceid><addsrcrecordid>eNqNj8FKw0AURQdRMGoX_YOHuI190zZNXIpY3NtlYZi2k-SVzLz2zQQp4r-bgB8g3MvZnM1RaqrxWeMLzvye_WxRYnGlMo1Vla-q5fxaZYjzIi9KXd2quxiPiKhXRZkpeYWaJKac5eAE1twLDaSQXCM2sUA9PLUOAoeOgrMCn_tWto98oNAMqjv3NhEHGLb1NrW73ffmB74otdwn6DhG4BrENX1nhdLlQd3Utotu8sd79bR-37x95NZHcxLyVi5Goxl7zNhjxp7FP7VfzulSCg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A first-order Fourier integrator for the nonlinear Schr\"odinger equation on \mathbb{T} without loss of regularity</title><source>American Mathematical Society Publications</source><creator>Yifei Wu ; Fangyan Yao</creator><creatorcontrib>Yifei Wu ; Fangyan Yao</creatorcontrib><description>In this paper, we propose a first-order Fourier integrator for solving the cubic nonlinear Schrödinger equation in one dimension. The scheme is explicit and can be implemented using the fast Fourier transform. By a rigorous analysis, we prove that the new scheme provides the first-order accuracy in H^\gamma for any initial data belonging to H^\gamma, for any \gamma >\frac 32. That is, up to some fixed time T, there exists some constant C=C(\|u\|_{L^\infty ([0,T]; H^{\gamma })})>0, such that \begin{equation*} \|u^n-u(t_n)\|_{H^\gamma (\mathbb {T})}\le C \tau , \end{equation*} where u^n denotes the numerical solution at t_n=n\tau. Moreover, the mass of the numerical solution M(u^n) verifies \begin{equation*} \left |M(u^n)-M(u_0)\right |\le C\tau ^5. \end{equation*} In particular, our scheme does not cost any additional derivative for the first-order convergence and the numerical solution obeys the almost mass conservation law. Furthermore, if u_0\in H^1(\mathbb {T}), we rigorously prove that \begin{equation*} \|u^n-u(t_n)\|_{H^1(\mathbb {T})}\le C\tau ^{\frac 12-}, \end{equation*} where C= C(\|u_0\|_{H^1(\mathbb {T})})>0.</description><identifier>ISSN: 0025-5718</identifier><identifier>EISSN: 1088-6842</identifier><identifier>DOI: 10.1090/mcom/3705</identifier><language>eng</language><ispartof>Mathematics of computation, 2022-05, Vol.91 (335), p.1213</ispartof><rights>Copyright 2021, American Mathematical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ams.org/mcom/2022-91-335/S0025-5718-2021-03705-9/S0025-5718-2021-03705-9.pdf$$EPDF$$P50$$Gams$$H</linktopdf><linktohtml>$$Uhttps://www.ams.org/mcom/2022-91-335/S0025-5718-2021-03705-9/$$EHTML$$P50$$Gams$$H</linktohtml><link.rule.ids>68,314,777,781,23309,27905,27906,77585,77595</link.rule.ids></links><search><creatorcontrib>Yifei Wu</creatorcontrib><creatorcontrib>Fangyan Yao</creatorcontrib><title>A first-order Fourier integrator for the nonlinear Schr\"odinger equation on \mathbb{T} without loss of regularity</title><title>Mathematics of computation</title><description>In this paper, we propose a first-order Fourier integrator for solving the cubic nonlinear Schrödinger equation in one dimension. The scheme is explicit and can be implemented using the fast Fourier transform. By a rigorous analysis, we prove that the new scheme provides the first-order accuracy in H^\gamma for any initial data belonging to H^\gamma, for any \gamma >\frac 32. That is, up to some fixed time T, there exists some constant C=C(\|u\|_{L^\infty ([0,T]; H^{\gamma })})>0, such that \begin{equation*} \|u^n-u(t_n)\|_{H^\gamma (\mathbb {T})}\le C \tau , \end{equation*} where u^n denotes the numerical solution at t_n=n\tau. Moreover, the mass of the numerical solution M(u^n) verifies \begin{equation*} \left |M(u^n)-M(u_0)\right |\le C\tau ^5. \end{equation*} In particular, our scheme does not cost any additional derivative for the first-order convergence and the numerical solution obeys the almost mass conservation law. Furthermore, if u_0\in H^1(\mathbb {T}), we rigorously prove that \begin{equation*} \|u^n-u(t_n)\|_{H^1(\mathbb {T})}\le C\tau ^{\frac 12-}, \end{equation*} where C= C(\|u_0\|_{H^1(\mathbb {T})})>0.</description><issn>0025-5718</issn><issn>1088-6842</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqNj8FKw0AURQdRMGoX_YOHuI190zZNXIpY3NtlYZi2k-SVzLz2zQQp4r-bgB8g3MvZnM1RaqrxWeMLzvye_WxRYnGlMo1Vla-q5fxaZYjzIi9KXd2quxiPiKhXRZkpeYWaJKac5eAE1twLDaSQXCM2sUA9PLUOAoeOgrMCn_tWto98oNAMqjv3NhEHGLb1NrW73ffmB74otdwn6DhG4BrENX1nhdLlQd3Utotu8sd79bR-37x95NZHcxLyVi5Goxl7zNhjxp7FP7VfzulSCg</recordid><startdate>20220501</startdate><enddate>20220501</enddate><creator>Yifei Wu</creator><creator>Fangyan Yao</creator><scope/></search><sort><creationdate>20220501</creationdate><title>A first-order Fourier integrator for the nonlinear Schr\"odinger equation on \mathbb{T} without loss of regularity</title><author>Yifei Wu ; Fangyan Yao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ams_primary_10_1090_mcom_37053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yifei Wu</creatorcontrib><creatorcontrib>Fangyan Yao</creatorcontrib><jtitle>Mathematics of computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yifei Wu</au><au>Fangyan Yao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A first-order Fourier integrator for the nonlinear Schr\"odinger equation on \mathbb{T} without loss of regularity</atitle><jtitle>Mathematics of computation</jtitle><date>2022-05-01</date><risdate>2022</risdate><volume>91</volume><issue>335</issue><spage>1213</spage><pages>1213-</pages><issn>0025-5718</issn><eissn>1088-6842</eissn><abstract>In this paper, we propose a first-order Fourier integrator for solving the cubic nonlinear Schrödinger equation in one dimension. The scheme is explicit and can be implemented using the fast Fourier transform. By a rigorous analysis, we prove that the new scheme provides the first-order accuracy in H^\gamma for any initial data belonging to H^\gamma, for any \gamma >\frac 32. That is, up to some fixed time T, there exists some constant C=C(\|u\|_{L^\infty ([0,T]; H^{\gamma })})>0, such that \begin{equation*} \|u^n-u(t_n)\|_{H^\gamma (\mathbb {T})}\le C \tau , \end{equation*} where u^n denotes the numerical solution at t_n=n\tau. Moreover, the mass of the numerical solution M(u^n) verifies \begin{equation*} \left |M(u^n)-M(u_0)\right |\le C\tau ^5. \end{equation*} In particular, our scheme does not cost any additional derivative for the first-order convergence and the numerical solution obeys the almost mass conservation law. Furthermore, if u_0\in H^1(\mathbb {T}), we rigorously prove that \begin{equation*} \|u^n-u(t_n)\|_{H^1(\mathbb {T})}\le C\tau ^{\frac 12-}, \end{equation*} where C= C(\|u_0\|_{H^1(\mathbb {T})})>0.</abstract><doi>10.1090/mcom/3705</doi><tpages>23</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0025-5718 |
ispartof | Mathematics of computation, 2022-05, Vol.91 (335), p.1213 |
issn | 0025-5718 1088-6842 |
language | eng |
recordid | cdi_ams_primary_10_1090_mcom_3705 |
source | American Mathematical Society Publications |
title | A first-order Fourier integrator for the nonlinear Schr\"odinger equation on \mathbb{T} without loss of regularity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T11%3A23%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ams&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20first-order%20Fourier%20integrator%20for%20the%20nonlinear%20Schr%5C%22odinger%20equation%20on%20%5Cmathbb%7BT%7D%20without%20loss%20of%20regularity&rft.jtitle=Mathematics%20of%20computation&rft.au=Yifei%20Wu&rft.date=2022-05-01&rft.volume=91&rft.issue=335&rft.spage=1213&rft.pages=1213-&rft.issn=0025-5718&rft.eissn=1088-6842&rft_id=info:doi/10.1090/mcom/3705&rft_dat=%3Cams%3E10_1090_mcom_3705%3C/ams%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |