A track correlation algorithm for multi-sensor integration

A track correlation algorithm in a multi-sensor integration system for a surveillance mission is proposed. The performance of such track correlation processing is strongly dependent not only on the target state estimation error distribution but also on the target spatial density distribution. Theref...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of guidance, control, and dynamics control, and dynamics, 1987-03, Vol.10 (2), p.166-171
Hauptverfasser: KOSAKA, MICHITAKA, MIYAMOTO, SHOJI, IHARA, HIROKAZU
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 171
container_issue 2
container_start_page 166
container_title Journal of guidance, control, and dynamics
container_volume 10
creator KOSAKA, MICHITAKA
MIYAMOTO, SHOJI
IHARA, HIROKAZU
description A track correlation algorithm in a multi-sensor integration system for a surveillance mission is proposed. The performance of such track correlation processing is strongly dependent not only on the target state estimation error distribution but also on the target spatial density distribution. Therefore, a track correlation problem is formulated as the likelihood ratio test problem which can take both target state estimation error distribution and target state spatial density distribution into consideration. From this formulation, the correlation algorithm for on-line processing is derived by modifications and approximations. Through analytical evaluations and simulation studies, it is shown that the proposed algorithm, is superior to the conventional nearest neighbor algorithm.
doi_str_mv 10.2514/3.20198
format Article
fullrecord <record><control><sourceid>proquest_aiaa_</sourceid><recordid>TN_cdi_aiaa_journals_3_20198_pdf_fulltext</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>24763549</sourcerecordid><originalsourceid>FETCH-LOGICAL-a357t-8f6bc3813c5413713bd42c132b56b76f6fb2b6bfcd59c11f90cc69df54bf68fb3</originalsourceid><addsrcrecordid>eNqN0E1LAzEQBuAgCtYq_oUFRfGwNR-b7MZbKX5BwYueQ5JN6tZ0U5Ms6L83toJQPHgahnl4mRkAThGcYIqqazLBEPFmD4wQJaQkTVPtgxGsCSop5PAQHMW4hBARhuoRuJkWKUj9VmgfgnEydb4vpFv40KXXVWF9KFaDS10ZTR9z0_XJLMKGHYMDK100Jz91DF7ubp9nD-X86f5xNp2XktA6lY1lSpMGEU0rRGpEVFthjQhWlKmaWWYVVkxZ3VKuEbIcas14a2mlLGusImNwsc1dB_8-mJjEqovaOCd744cocFUzwvOt_4K04hme7cClH0KfjxCY5B05plmOweVW6eBjDMaKdehWMnwKBMX3qwURm1dnebWVspPyN-tnLNatFXZwLpmPlO35X3Y38guLW4lM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2313792576</pqid></control><display><type>article</type><title>A track correlation algorithm for multi-sensor integration</title><source>Alma/SFX Local Collection</source><creator>KOSAKA, MICHITAKA ; MIYAMOTO, SHOJI ; IHARA, HIROKAZU</creator><creatorcontrib>KOSAKA, MICHITAKA ; MIYAMOTO, SHOJI ; IHARA, HIROKAZU</creatorcontrib><description>A track correlation algorithm in a multi-sensor integration system for a surveillance mission is proposed. The performance of such track correlation processing is strongly dependent not only on the target state estimation error distribution but also on the target spatial density distribution. Therefore, a track correlation problem is formulated as the likelihood ratio test problem which can take both target state estimation error distribution and target state spatial density distribution into consideration. From this formulation, the correlation algorithm for on-line processing is derived by modifications and approximations. Through analytical evaluations and simulation studies, it is shown that the proposed algorithm, is superior to the conventional nearest neighbor algorithm.</description><identifier>ISSN: 0731-5090</identifier><identifier>EISSN: 1533-3884</identifier><identifier>DOI: 10.2514/3.20198</identifier><language>eng</language><publisher>Reston: American Institute of Aeronautics and Astronautics</publisher><subject>Aircraft ; Algorithms ; Approximation ; Hypotheses ; Laboratories ; Optimization techniques ; Sensors ; Surveillance ; Systems development</subject><ispartof>Journal of guidance, control, and dynamics, 1987-03, Vol.10 (2), p.166-171</ispartof><rights>Copyright American Institute of Aeronautics and Astronautics Mar/Apr 1987</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a357t-8f6bc3813c5413713bd42c132b56b76f6fb2b6bfcd59c11f90cc69df54bf68fb3</citedby><cites>FETCH-LOGICAL-a357t-8f6bc3813c5413713bd42c132b56b76f6fb2b6bfcd59c11f90cc69df54bf68fb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>KOSAKA, MICHITAKA</creatorcontrib><creatorcontrib>MIYAMOTO, SHOJI</creatorcontrib><creatorcontrib>IHARA, HIROKAZU</creatorcontrib><title>A track correlation algorithm for multi-sensor integration</title><title>Journal of guidance, control, and dynamics</title><description>A track correlation algorithm in a multi-sensor integration system for a surveillance mission is proposed. The performance of such track correlation processing is strongly dependent not only on the target state estimation error distribution but also on the target spatial density distribution. Therefore, a track correlation problem is formulated as the likelihood ratio test problem which can take both target state estimation error distribution and target state spatial density distribution into consideration. From this formulation, the correlation algorithm for on-line processing is derived by modifications and approximations. Through analytical evaluations and simulation studies, it is shown that the proposed algorithm, is superior to the conventional nearest neighbor algorithm.</description><subject>Aircraft</subject><subject>Algorithms</subject><subject>Approximation</subject><subject>Hypotheses</subject><subject>Laboratories</subject><subject>Optimization techniques</subject><subject>Sensors</subject><subject>Surveillance</subject><subject>Systems development</subject><issn>0731-5090</issn><issn>1533-3884</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1987</creationdate><recordtype>article</recordtype><recordid>eNqN0E1LAzEQBuAgCtYq_oUFRfGwNR-b7MZbKX5BwYueQ5JN6tZ0U5Ms6L83toJQPHgahnl4mRkAThGcYIqqazLBEPFmD4wQJaQkTVPtgxGsCSop5PAQHMW4hBARhuoRuJkWKUj9VmgfgnEydb4vpFv40KXXVWF9KFaDS10ZTR9z0_XJLMKGHYMDK100Jz91DF7ubp9nD-X86f5xNp2XktA6lY1lSpMGEU0rRGpEVFthjQhWlKmaWWYVVkxZ3VKuEbIcas14a2mlLGusImNwsc1dB_8-mJjEqovaOCd744cocFUzwvOt_4K04hme7cClH0KfjxCY5B05plmOweVW6eBjDMaKdehWMnwKBMX3qwURm1dnebWVspPyN-tnLNatFXZwLpmPlO35X3Y38guLW4lM</recordid><startdate>19870301</startdate><enddate>19870301</enddate><creator>KOSAKA, MICHITAKA</creator><creator>MIYAMOTO, SHOJI</creator><creator>IHARA, HIROKAZU</creator><general>American Institute of Aeronautics and Astronautics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19870301</creationdate><title>A track correlation algorithm for multi-sensor integration</title><author>KOSAKA, MICHITAKA ; MIYAMOTO, SHOJI ; IHARA, HIROKAZU</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a357t-8f6bc3813c5413713bd42c132b56b76f6fb2b6bfcd59c11f90cc69df54bf68fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1987</creationdate><topic>Aircraft</topic><topic>Algorithms</topic><topic>Approximation</topic><topic>Hypotheses</topic><topic>Laboratories</topic><topic>Optimization techniques</topic><topic>Sensors</topic><topic>Surveillance</topic><topic>Systems development</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>KOSAKA, MICHITAKA</creatorcontrib><creatorcontrib>MIYAMOTO, SHOJI</creatorcontrib><creatorcontrib>IHARA, HIROKAZU</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of guidance, control, and dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>KOSAKA, MICHITAKA</au><au>MIYAMOTO, SHOJI</au><au>IHARA, HIROKAZU</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A track correlation algorithm for multi-sensor integration</atitle><jtitle>Journal of guidance, control, and dynamics</jtitle><date>1987-03-01</date><risdate>1987</risdate><volume>10</volume><issue>2</issue><spage>166</spage><epage>171</epage><pages>166-171</pages><issn>0731-5090</issn><eissn>1533-3884</eissn><abstract>A track correlation algorithm in a multi-sensor integration system for a surveillance mission is proposed. The performance of such track correlation processing is strongly dependent not only on the target state estimation error distribution but also on the target spatial density distribution. Therefore, a track correlation problem is formulated as the likelihood ratio test problem which can take both target state estimation error distribution and target state spatial density distribution into consideration. From this formulation, the correlation algorithm for on-line processing is derived by modifications and approximations. Through analytical evaluations and simulation studies, it is shown that the proposed algorithm, is superior to the conventional nearest neighbor algorithm.</abstract><cop>Reston</cop><pub>American Institute of Aeronautics and Astronautics</pub><doi>10.2514/3.20198</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0731-5090
ispartof Journal of guidance, control, and dynamics, 1987-03, Vol.10 (2), p.166-171
issn 0731-5090
1533-3884
language eng
recordid cdi_aiaa_journals_3_20198_pdf_fulltext
source Alma/SFX Local Collection
subjects Aircraft
Algorithms
Approximation
Hypotheses
Laboratories
Optimization techniques
Sensors
Surveillance
Systems development
title A track correlation algorithm for multi-sensor integration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T08%3A36%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_aiaa_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20track%20correlation%20algorithm%20for%20multi-sensor%20integration&rft.jtitle=Journal%20of%20guidance,%20control,%20and%20dynamics&rft.au=KOSAKA,%20MICHITAKA&rft.date=1987-03-01&rft.volume=10&rft.issue=2&rft.spage=166&rft.epage=171&rft.pages=166-171&rft.issn=0731-5090&rft.eissn=1533-3884&rft_id=info:doi/10.2514/3.20198&rft_dat=%3Cproquest_aiaa_%3E24763549%3C/proquest_aiaa_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2313792576&rft_id=info:pmid/&rfr_iscdi=true