Aerodynamics of the Mars Microprobe Entry Vehicles
The selection of the unique aeroshell shape for the Mars Microprobes is discussed. A description of its aerodynamics in hypersonic rarefied, hypersonic continuum, supersonic, and transonic flow regimes is then presented. This description is based on direct simulation Monte Carlo analyses in the rare...
Gespeichert in:
Veröffentlicht in: | Journal of spacecraft and rockets 1999-05, Vol.36 (3), p.392-398 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 398 |
---|---|
container_issue | 3 |
container_start_page | 392 |
container_title | Journal of spacecraft and rockets |
container_volume | 36 |
creator | Mitcheltree, R. A Moss, J. N Cheatwood, F. M Greene, F. A Braun, R. D |
description | The selection of the unique aeroshell shape for the Mars Microprobes is discussed. A description of its aerodynamics in hypersonic rarefied, hypersonic continuum, supersonic, and transonic flow regimes is then presented. This description is based on direct simulation Monte Carlo analyses in the rarefied flow regime, thermochemical nonequilibrium computational fluid dynamics in the hypersonic regime, existing wind-tunnel data in the supersonic and transonic regime, additional computational work in the transonic regime, and, finally, ballistic-range data. The aeroshell is shown to possess the correct combination of aerodynamic stability and drag to convert the probe's initial tumbling attitude and high velocity at atmospheric interface into the desired surface-impact orientation and velocity. |
doi_str_mv | 10.2514/2.3458 |
format | Article |
fullrecord | <record><control><sourceid>proquest_aiaa_</sourceid><recordid>TN_cdi_aiaa_journals_2_3458_pdf_fulltext</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>27108335</sourcerecordid><originalsourceid>FETCH-LOGICAL-a531t-384a7bb7469ab4a1fb1a750e88601f7ae2ed160a6a531798d3358a26067e07c73</originalsourceid><addsrcrecordid>eNqNkctKw0AUhgdRsFZ9hoCgblLnzGQuWZZSL9DiRt0OJ8mEpqRJnUnAvr1TK1S7EFdncT6-c_kJuQQ6YgKSOzbiidBHZACC81iqNDkmA0oZixMp6Ck5835JKUgt0wFhY-vaYtPgqsp91JZRt7DRHJ2P5lXu2rVrMxtNm85toje7qPLa-nNyUmLt7cV3HZLX--nL5DGePT88TcazGAWHLuY6QZVlKpEpZglCmQEqQa3WkkKp0DJbgKQot7hKdcG50MgklcpSlSs-JDc7b1jivbe-M6vK57ausbFt700whysS0IG8_pNkCkALrv4DUh32CODVAbhse9eEcw0DCYpK0GyvC5_y3tnSrF21QrcxQM02C8PMNosA3u5ArBB_qL66Zl2UpuzrurMf3X7yb_RA-AltO5EF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2161706182</pqid></control><display><type>article</type><title>Aerodynamics of the Mars Microprobe Entry Vehicles</title><source>Alma/SFX Local Collection</source><creator>Mitcheltree, R. A ; Moss, J. N ; Cheatwood, F. M ; Greene, F. A ; Braun, R. D</creator><creatorcontrib>Mitcheltree, R. A ; Moss, J. N ; Cheatwood, F. M ; Greene, F. A ; Braun, R. D</creatorcontrib><description>The selection of the unique aeroshell shape for the Mars Microprobes is discussed. A description of its aerodynamics in hypersonic rarefied, hypersonic continuum, supersonic, and transonic flow regimes is then presented. This description is based on direct simulation Monte Carlo analyses in the rarefied flow regime, thermochemical nonequilibrium computational fluid dynamics in the hypersonic regime, existing wind-tunnel data in the supersonic and transonic regime, additional computational work in the transonic regime, and, finally, ballistic-range data. The aeroshell is shown to possess the correct combination of aerodynamic stability and drag to convert the probe's initial tumbling attitude and high velocity at atmospheric interface into the desired surface-impact orientation and velocity.</description><identifier>ISSN: 0022-4650</identifier><identifier>EISSN: 1533-6794</identifier><identifier>DOI: 10.2514/2.3458</identifier><language>eng</language><publisher>Reston: American Institute of Aeronautics and Astronautics</publisher><subject>Computational fluid dynamics ; Continuum mechanics ; Drag ; Hypersonic aerodynamics ; Interplanetary flight ; Monte Carlo methods ; Space probes ; Supersonic aerodynamics ; Transonic aerodynamics</subject><ispartof>Journal of spacecraft and rockets, 1999-05, Vol.36 (3), p.392-398</ispartof><rights>Copyright American Institute of Aeronautics and Astronautics May/Jun 1999</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a531t-384a7bb7469ab4a1fb1a750e88601f7ae2ed160a6a531798d3358a26067e07c73</citedby><cites>FETCH-LOGICAL-a531t-384a7bb7469ab4a1fb1a750e88601f7ae2ed160a6a531798d3358a26067e07c73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27926,27927</link.rule.ids></links><search><creatorcontrib>Mitcheltree, R. A</creatorcontrib><creatorcontrib>Moss, J. N</creatorcontrib><creatorcontrib>Cheatwood, F. M</creatorcontrib><creatorcontrib>Greene, F. A</creatorcontrib><creatorcontrib>Braun, R. D</creatorcontrib><title>Aerodynamics of the Mars Microprobe Entry Vehicles</title><title>Journal of spacecraft and rockets</title><description>The selection of the unique aeroshell shape for the Mars Microprobes is discussed. A description of its aerodynamics in hypersonic rarefied, hypersonic continuum, supersonic, and transonic flow regimes is then presented. This description is based on direct simulation Monte Carlo analyses in the rarefied flow regime, thermochemical nonequilibrium computational fluid dynamics in the hypersonic regime, existing wind-tunnel data in the supersonic and transonic regime, additional computational work in the transonic regime, and, finally, ballistic-range data. The aeroshell is shown to possess the correct combination of aerodynamic stability and drag to convert the probe's initial tumbling attitude and high velocity at atmospheric interface into the desired surface-impact orientation and velocity.</description><subject>Computational fluid dynamics</subject><subject>Continuum mechanics</subject><subject>Drag</subject><subject>Hypersonic aerodynamics</subject><subject>Interplanetary flight</subject><subject>Monte Carlo methods</subject><subject>Space probes</subject><subject>Supersonic aerodynamics</subject><subject>Transonic aerodynamics</subject><issn>0022-4650</issn><issn>1533-6794</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNqNkctKw0AUhgdRsFZ9hoCgblLnzGQuWZZSL9DiRt0OJ8mEpqRJnUnAvr1TK1S7EFdncT6-c_kJuQQ6YgKSOzbiidBHZACC81iqNDkmA0oZixMp6Ck5835JKUgt0wFhY-vaYtPgqsp91JZRt7DRHJ2P5lXu2rVrMxtNm85toje7qPLa-nNyUmLt7cV3HZLX--nL5DGePT88TcazGAWHLuY6QZVlKpEpZglCmQEqQa3WkkKp0DJbgKQot7hKdcG50MgklcpSlSs-JDc7b1jivbe-M6vK57ausbFt700whysS0IG8_pNkCkALrv4DUh32CODVAbhse9eEcw0DCYpK0GyvC5_y3tnSrF21QrcxQM02C8PMNosA3u5ArBB_qL66Zl2UpuzrurMf3X7yb_RA-AltO5EF</recordid><startdate>19990501</startdate><enddate>19990501</enddate><creator>Mitcheltree, R. A</creator><creator>Moss, J. N</creator><creator>Cheatwood, F. M</creator><creator>Greene, F. A</creator><creator>Braun, R. D</creator><general>American Institute of Aeronautics and Astronautics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><scope>7TC</scope></search><sort><creationdate>19990501</creationdate><title>Aerodynamics of the Mars Microprobe Entry Vehicles</title><author>Mitcheltree, R. A ; Moss, J. N ; Cheatwood, F. M ; Greene, F. A ; Braun, R. D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a531t-384a7bb7469ab4a1fb1a750e88601f7ae2ed160a6a531798d3358a26067e07c73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Computational fluid dynamics</topic><topic>Continuum mechanics</topic><topic>Drag</topic><topic>Hypersonic aerodynamics</topic><topic>Interplanetary flight</topic><topic>Monte Carlo methods</topic><topic>Space probes</topic><topic>Supersonic aerodynamics</topic><topic>Transonic aerodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mitcheltree, R. A</creatorcontrib><creatorcontrib>Moss, J. N</creatorcontrib><creatorcontrib>Cheatwood, F. M</creatorcontrib><creatorcontrib>Greene, F. A</creatorcontrib><creatorcontrib>Braun, R. D</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Mechanical Engineering Abstracts</collection><jtitle>Journal of spacecraft and rockets</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mitcheltree, R. A</au><au>Moss, J. N</au><au>Cheatwood, F. M</au><au>Greene, F. A</au><au>Braun, R. D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Aerodynamics of the Mars Microprobe Entry Vehicles</atitle><jtitle>Journal of spacecraft and rockets</jtitle><date>1999-05-01</date><risdate>1999</risdate><volume>36</volume><issue>3</issue><spage>392</spage><epage>398</epage><pages>392-398</pages><issn>0022-4650</issn><eissn>1533-6794</eissn><abstract>The selection of the unique aeroshell shape for the Mars Microprobes is discussed. A description of its aerodynamics in hypersonic rarefied, hypersonic continuum, supersonic, and transonic flow regimes is then presented. This description is based on direct simulation Monte Carlo analyses in the rarefied flow regime, thermochemical nonequilibrium computational fluid dynamics in the hypersonic regime, existing wind-tunnel data in the supersonic and transonic regime, additional computational work in the transonic regime, and, finally, ballistic-range data. The aeroshell is shown to possess the correct combination of aerodynamic stability and drag to convert the probe's initial tumbling attitude and high velocity at atmospheric interface into the desired surface-impact orientation and velocity.</abstract><cop>Reston</cop><pub>American Institute of Aeronautics and Astronautics</pub><doi>10.2514/2.3458</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-4650 |
ispartof | Journal of spacecraft and rockets, 1999-05, Vol.36 (3), p.392-398 |
issn | 0022-4650 1533-6794 |
language | eng |
recordid | cdi_aiaa_journals_2_3458_pdf_fulltext |
source | Alma/SFX Local Collection |
subjects | Computational fluid dynamics Continuum mechanics Drag Hypersonic aerodynamics Interplanetary flight Monte Carlo methods Space probes Supersonic aerodynamics Transonic aerodynamics |
title | Aerodynamics of the Mars Microprobe Entry Vehicles |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T03%3A56%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_aiaa_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Aerodynamics%20of%20the%20Mars%20Microprobe%20Entry%20Vehicles&rft.jtitle=Journal%20of%20spacecraft%20and%20rockets&rft.au=Mitcheltree,%20R.%20A&rft.date=1999-05-01&rft.volume=36&rft.issue=3&rft.spage=392&rft.epage=398&rft.pages=392-398&rft.issn=0022-4650&rft.eissn=1533-6794&rft_id=info:doi/10.2514/2.3458&rft_dat=%3Cproquest_aiaa_%3E27108335%3C/proquest_aiaa_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2161706182&rft_id=info:pmid/&rfr_iscdi=true |