Aerodynamics of the Mars Microprobe Entry Vehicles

The selection of the unique aeroshell shape for the Mars Microprobes is discussed. A description of its aerodynamics in hypersonic rarefied, hypersonic continuum, supersonic, and transonic flow regimes is then presented. This description is based on direct simulation Monte Carlo analyses in the rare...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of spacecraft and rockets 1999-05, Vol.36 (3), p.392-398
Hauptverfasser: Mitcheltree, R. A, Moss, J. N, Cheatwood, F. M, Greene, F. A, Braun, R. D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 398
container_issue 3
container_start_page 392
container_title Journal of spacecraft and rockets
container_volume 36
creator Mitcheltree, R. A
Moss, J. N
Cheatwood, F. M
Greene, F. A
Braun, R. D
description The selection of the unique aeroshell shape for the Mars Microprobes is discussed. A description of its aerodynamics in hypersonic rarefied, hypersonic continuum, supersonic, and transonic flow regimes is then presented. This description is based on direct simulation Monte Carlo analyses in the rarefied flow regime, thermochemical nonequilibrium computational fluid dynamics in the hypersonic regime, existing wind-tunnel data in the supersonic and transonic regime, additional computational work in the transonic regime, and, finally, ballistic-range data. The aeroshell is shown to possess the correct combination of aerodynamic stability and drag to convert the probe's initial tumbling attitude and high velocity at atmospheric interface into the desired surface-impact orientation and velocity.
doi_str_mv 10.2514/2.3458
format Article
fullrecord <record><control><sourceid>proquest_aiaa_</sourceid><recordid>TN_cdi_aiaa_journals_2_3458_pdf_fulltext</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>27108335</sourcerecordid><originalsourceid>FETCH-LOGICAL-a531t-384a7bb7469ab4a1fb1a750e88601f7ae2ed160a6a531798d3358a26067e07c73</originalsourceid><addsrcrecordid>eNqNkctKw0AUhgdRsFZ9hoCgblLnzGQuWZZSL9DiRt0OJ8mEpqRJnUnAvr1TK1S7EFdncT6-c_kJuQQ6YgKSOzbiidBHZACC81iqNDkmA0oZixMp6Ck5835JKUgt0wFhY-vaYtPgqsp91JZRt7DRHJ2P5lXu2rVrMxtNm85toje7qPLa-nNyUmLt7cV3HZLX--nL5DGePT88TcazGAWHLuY6QZVlKpEpZglCmQEqQa3WkkKp0DJbgKQot7hKdcG50MgklcpSlSs-JDc7b1jivbe-M6vK57ausbFt700whysS0IG8_pNkCkALrv4DUh32CODVAbhse9eEcw0DCYpK0GyvC5_y3tnSrF21QrcxQM02C8PMNosA3u5ArBB_qL66Zl2UpuzrurMf3X7yb_RA-AltO5EF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2161706182</pqid></control><display><type>article</type><title>Aerodynamics of the Mars Microprobe Entry Vehicles</title><source>Alma/SFX Local Collection</source><creator>Mitcheltree, R. A ; Moss, J. N ; Cheatwood, F. M ; Greene, F. A ; Braun, R. D</creator><creatorcontrib>Mitcheltree, R. A ; Moss, J. N ; Cheatwood, F. M ; Greene, F. A ; Braun, R. D</creatorcontrib><description>The selection of the unique aeroshell shape for the Mars Microprobes is discussed. A description of its aerodynamics in hypersonic rarefied, hypersonic continuum, supersonic, and transonic flow regimes is then presented. This description is based on direct simulation Monte Carlo analyses in the rarefied flow regime, thermochemical nonequilibrium computational fluid dynamics in the hypersonic regime, existing wind-tunnel data in the supersonic and transonic regime, additional computational work in the transonic regime, and, finally, ballistic-range data. The aeroshell is shown to possess the correct combination of aerodynamic stability and drag to convert the probe's initial tumbling attitude and high velocity at atmospheric interface into the desired surface-impact orientation and velocity.</description><identifier>ISSN: 0022-4650</identifier><identifier>EISSN: 1533-6794</identifier><identifier>DOI: 10.2514/2.3458</identifier><language>eng</language><publisher>Reston: American Institute of Aeronautics and Astronautics</publisher><subject>Computational fluid dynamics ; Continuum mechanics ; Drag ; Hypersonic aerodynamics ; Interplanetary flight ; Monte Carlo methods ; Space probes ; Supersonic aerodynamics ; Transonic aerodynamics</subject><ispartof>Journal of spacecraft and rockets, 1999-05, Vol.36 (3), p.392-398</ispartof><rights>Copyright American Institute of Aeronautics and Astronautics May/Jun 1999</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a531t-384a7bb7469ab4a1fb1a750e88601f7ae2ed160a6a531798d3358a26067e07c73</citedby><cites>FETCH-LOGICAL-a531t-384a7bb7469ab4a1fb1a750e88601f7ae2ed160a6a531798d3358a26067e07c73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27926,27927</link.rule.ids></links><search><creatorcontrib>Mitcheltree, R. A</creatorcontrib><creatorcontrib>Moss, J. N</creatorcontrib><creatorcontrib>Cheatwood, F. M</creatorcontrib><creatorcontrib>Greene, F. A</creatorcontrib><creatorcontrib>Braun, R. D</creatorcontrib><title>Aerodynamics of the Mars Microprobe Entry Vehicles</title><title>Journal of spacecraft and rockets</title><description>The selection of the unique aeroshell shape for the Mars Microprobes is discussed. A description of its aerodynamics in hypersonic rarefied, hypersonic continuum, supersonic, and transonic flow regimes is then presented. This description is based on direct simulation Monte Carlo analyses in the rarefied flow regime, thermochemical nonequilibrium computational fluid dynamics in the hypersonic regime, existing wind-tunnel data in the supersonic and transonic regime, additional computational work in the transonic regime, and, finally, ballistic-range data. The aeroshell is shown to possess the correct combination of aerodynamic stability and drag to convert the probe's initial tumbling attitude and high velocity at atmospheric interface into the desired surface-impact orientation and velocity.</description><subject>Computational fluid dynamics</subject><subject>Continuum mechanics</subject><subject>Drag</subject><subject>Hypersonic aerodynamics</subject><subject>Interplanetary flight</subject><subject>Monte Carlo methods</subject><subject>Space probes</subject><subject>Supersonic aerodynamics</subject><subject>Transonic aerodynamics</subject><issn>0022-4650</issn><issn>1533-6794</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNqNkctKw0AUhgdRsFZ9hoCgblLnzGQuWZZSL9DiRt0OJ8mEpqRJnUnAvr1TK1S7EFdncT6-c_kJuQQ6YgKSOzbiidBHZACC81iqNDkmA0oZixMp6Ck5835JKUgt0wFhY-vaYtPgqsp91JZRt7DRHJ2P5lXu2rVrMxtNm85toje7qPLa-nNyUmLt7cV3HZLX--nL5DGePT88TcazGAWHLuY6QZVlKpEpZglCmQEqQa3WkkKp0DJbgKQot7hKdcG50MgklcpSlSs-JDc7b1jivbe-M6vK57ausbFt700whysS0IG8_pNkCkALrv4DUh32CODVAbhse9eEcw0DCYpK0GyvC5_y3tnSrF21QrcxQM02C8PMNosA3u5ArBB_qL66Zl2UpuzrurMf3X7yb_RA-AltO5EF</recordid><startdate>19990501</startdate><enddate>19990501</enddate><creator>Mitcheltree, R. A</creator><creator>Moss, J. N</creator><creator>Cheatwood, F. M</creator><creator>Greene, F. A</creator><creator>Braun, R. D</creator><general>American Institute of Aeronautics and Astronautics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><scope>7TC</scope></search><sort><creationdate>19990501</creationdate><title>Aerodynamics of the Mars Microprobe Entry Vehicles</title><author>Mitcheltree, R. A ; Moss, J. N ; Cheatwood, F. M ; Greene, F. A ; Braun, R. D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a531t-384a7bb7469ab4a1fb1a750e88601f7ae2ed160a6a531798d3358a26067e07c73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Computational fluid dynamics</topic><topic>Continuum mechanics</topic><topic>Drag</topic><topic>Hypersonic aerodynamics</topic><topic>Interplanetary flight</topic><topic>Monte Carlo methods</topic><topic>Space probes</topic><topic>Supersonic aerodynamics</topic><topic>Transonic aerodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mitcheltree, R. A</creatorcontrib><creatorcontrib>Moss, J. N</creatorcontrib><creatorcontrib>Cheatwood, F. M</creatorcontrib><creatorcontrib>Greene, F. A</creatorcontrib><creatorcontrib>Braun, R. D</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Mechanical Engineering Abstracts</collection><jtitle>Journal of spacecraft and rockets</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mitcheltree, R. A</au><au>Moss, J. N</au><au>Cheatwood, F. M</au><au>Greene, F. A</au><au>Braun, R. D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Aerodynamics of the Mars Microprobe Entry Vehicles</atitle><jtitle>Journal of spacecraft and rockets</jtitle><date>1999-05-01</date><risdate>1999</risdate><volume>36</volume><issue>3</issue><spage>392</spage><epage>398</epage><pages>392-398</pages><issn>0022-4650</issn><eissn>1533-6794</eissn><abstract>The selection of the unique aeroshell shape for the Mars Microprobes is discussed. A description of its aerodynamics in hypersonic rarefied, hypersonic continuum, supersonic, and transonic flow regimes is then presented. This description is based on direct simulation Monte Carlo analyses in the rarefied flow regime, thermochemical nonequilibrium computational fluid dynamics in the hypersonic regime, existing wind-tunnel data in the supersonic and transonic regime, additional computational work in the transonic regime, and, finally, ballistic-range data. The aeroshell is shown to possess the correct combination of aerodynamic stability and drag to convert the probe's initial tumbling attitude and high velocity at atmospheric interface into the desired surface-impact orientation and velocity.</abstract><cop>Reston</cop><pub>American Institute of Aeronautics and Astronautics</pub><doi>10.2514/2.3458</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-4650
ispartof Journal of spacecraft and rockets, 1999-05, Vol.36 (3), p.392-398
issn 0022-4650
1533-6794
language eng
recordid cdi_aiaa_journals_2_3458_pdf_fulltext
source Alma/SFX Local Collection
subjects Computational fluid dynamics
Continuum mechanics
Drag
Hypersonic aerodynamics
Interplanetary flight
Monte Carlo methods
Space probes
Supersonic aerodynamics
Transonic aerodynamics
title Aerodynamics of the Mars Microprobe Entry Vehicles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T03%3A56%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_aiaa_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Aerodynamics%20of%20the%20Mars%20Microprobe%20Entry%20Vehicles&rft.jtitle=Journal%20of%20spacecraft%20and%20rockets&rft.au=Mitcheltree,%20R.%20A&rft.date=1999-05-01&rft.volume=36&rft.issue=3&rft.spage=392&rft.epage=398&rft.pages=392-398&rft.issn=0022-4650&rft.eissn=1533-6794&rft_id=info:doi/10.2514/2.3458&rft_dat=%3Cproquest_aiaa_%3E27108335%3C/proquest_aiaa_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2161706182&rft_id=info:pmid/&rfr_iscdi=true