Modeling the Gravitational Potential of a Nonspherical Asteroid

In this paper a simple and very general approximation of the gravitational potential for a nonspherical body is presented. The gravitational potential is expanded using spherical harmonics and spherical Bessel functions, and it satisfies Laplace’s equation outside the circumscribing sphere and Poiss...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of guidance, control, and dynamics control, and dynamics, 2013-05, Vol.36 (3), p.790-798
Hauptverfasser: Herrera-Sucarrat, E, Palmer, P. L, Roberts, R. M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 798
container_issue 3
container_start_page 790
container_title Journal of guidance, control, and dynamics
container_volume 36
creator Herrera-Sucarrat, E
Palmer, P. L
Roberts, R. M
description In this paper a simple and very general approximation of the gravitational potential for a nonspherical body is presented. The gravitational potential is expanded using spherical harmonics and spherical Bessel functions, and it satisfies Laplace’s equation outside the circumscribing sphere and Poisson’s equation inside the circumscribing sphere. Therefore, trajectories can be integrated near the surface of the asteroid, as well as far away from it. This paper focuses on the construction of a simple expansion of the gravitational potential that preserves the critical nonlinear dynamical behavior of other gravitational models for a nonspherical asteroid that are more complex and computationally more demanding.
doi_str_mv 10.2514/1.58140
format Article
fullrecord <record><control><sourceid>proquest_aiaa_</sourceid><recordid>TN_cdi_aiaa_journals_1_58140_pdf_fulltext</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2494704068</sourcerecordid><originalsourceid>FETCH-LOGICAL-a410t-ef4feadc480b3239de16a43b10421f5de839b45f0e384b848f90cfbb6361db0b3</originalsourceid><addsrcrecordid>eNp90E9LwzAYBvAgCs4pfoWCgnrofN8mbdOTjKFT8N9BzyFtE5fRNTPJRL-90XmQIZ4Skl8e3jyEHCKMshzZOY5yjgy2yABzSlPKOdsmAygppjlUsEv2vJ8DIC2wHJCLO9uqzvQvSZipZOrkmwkyGNvLLnm0QfXBxJ3ViUzube-XM-VME0_GPihnTbtPdrTsvDr4WYfk-eryaXKd3j5Mbybj21QyhJAqzbSSbcM41DSjVauwkIzWCCxDnbeK06pmuQZFOas547qCRtd1Eads6_hmSE7XuUtnX1fKB7EwvlFdJ3tlV14gw5KXBRYQ6dEGnduVix_yImMVK4FBwf9TsZo8i2lVEdXJWjXOeu-UFktnFtJ9CATxVbdA8V13lGdrKY2Uv7LW12LZaqFXXRfUe4j2-E-7EfkJwhyJQA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1365278796</pqid></control><display><type>article</type><title>Modeling the Gravitational Potential of a Nonspherical Asteroid</title><source>Alma/SFX Local Collection</source><creator>Herrera-Sucarrat, E ; Palmer, P. L ; Roberts, R. M</creator><creatorcontrib>Herrera-Sucarrat, E ; Palmer, P. L ; Roberts, R. M</creatorcontrib><description>In this paper a simple and very general approximation of the gravitational potential for a nonspherical body is presented. The gravitational potential is expanded using spherical harmonics and spherical Bessel functions, and it satisfies Laplace’s equation outside the circumscribing sphere and Poisson’s equation inside the circumscribing sphere. Therefore, trajectories can be integrated near the surface of the asteroid, as well as far away from it. This paper focuses on the construction of a simple expansion of the gravitational potential that preserves the critical nonlinear dynamical behavior of other gravitational models for a nonspherical asteroid that are more complex and computationally more demanding.</description><identifier>ISSN: 0731-5090</identifier><identifier>EISSN: 1533-3884</identifier><identifier>DOI: 10.2514/1.58140</identifier><language>eng</language><publisher>Reston: American Institute of Aeronautics and Astronautics</publisher><subject>Approximation ; Asteroids ; Bessel functions ; Gravitation ; Inertia ; Laplace equation ; Mathematical analysis ; Poisson equation ; Preserves ; Spherical harmonics</subject><ispartof>Journal of guidance, control, and dynamics, 2013-05, Vol.36 (3), p.790-798</ispartof><rights>Copyright © 2012 by E. Herrera-Sucarrat, P. L. Palmer, and R. M. Roberts, Surrey Space Centre, University of Surrey. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission. Copies of this paper may be made for personal or internal use, on condition that the copier pay the $10.00 per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923; include the code and $10.00 in correspondence with the CCC.</rights><rights>Copyright © 2012 by E. Herrera-Sucarrat, P. L. Palmer, and R. M. Roberts, Surrey Space Centre, University of Surrey. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission. Copies of this paper may be made for personal or internal use, on condition that the copier pay the $10.00 per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923; include the code 1533-3884/13 and $10.00 in correspondence with the CCC.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a410t-ef4feadc480b3239de16a43b10421f5de839b45f0e384b848f90cfbb6361db0b3</citedby><cites>FETCH-LOGICAL-a410t-ef4feadc480b3239de16a43b10421f5de839b45f0e384b848f90cfbb6361db0b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27929,27930</link.rule.ids></links><search><creatorcontrib>Herrera-Sucarrat, E</creatorcontrib><creatorcontrib>Palmer, P. L</creatorcontrib><creatorcontrib>Roberts, R. M</creatorcontrib><title>Modeling the Gravitational Potential of a Nonspherical Asteroid</title><title>Journal of guidance, control, and dynamics</title><description>In this paper a simple and very general approximation of the gravitational potential for a nonspherical body is presented. The gravitational potential is expanded using spherical harmonics and spherical Bessel functions, and it satisfies Laplace’s equation outside the circumscribing sphere and Poisson’s equation inside the circumscribing sphere. Therefore, trajectories can be integrated near the surface of the asteroid, as well as far away from it. This paper focuses on the construction of a simple expansion of the gravitational potential that preserves the critical nonlinear dynamical behavior of other gravitational models for a nonspherical asteroid that are more complex and computationally more demanding.</description><subject>Approximation</subject><subject>Asteroids</subject><subject>Bessel functions</subject><subject>Gravitation</subject><subject>Inertia</subject><subject>Laplace equation</subject><subject>Mathematical analysis</subject><subject>Poisson equation</subject><subject>Preserves</subject><subject>Spherical harmonics</subject><issn>0731-5090</issn><issn>1533-3884</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp90E9LwzAYBvAgCs4pfoWCgnrofN8mbdOTjKFT8N9BzyFtE5fRNTPJRL-90XmQIZ4Skl8e3jyEHCKMshzZOY5yjgy2yABzSlPKOdsmAygppjlUsEv2vJ8DIC2wHJCLO9uqzvQvSZipZOrkmwkyGNvLLnm0QfXBxJ3ViUzube-XM-VME0_GPihnTbtPdrTsvDr4WYfk-eryaXKd3j5Mbybj21QyhJAqzbSSbcM41DSjVauwkIzWCCxDnbeK06pmuQZFOas547qCRtd1Eads6_hmSE7XuUtnX1fKB7EwvlFdJ3tlV14gw5KXBRYQ6dEGnduVix_yImMVK4FBwf9TsZo8i2lVEdXJWjXOeu-UFktnFtJ9CATxVbdA8V13lGdrKY2Uv7LW12LZaqFXXRfUe4j2-E-7EfkJwhyJQA</recordid><startdate>20130501</startdate><enddate>20130501</enddate><creator>Herrera-Sucarrat, E</creator><creator>Palmer, P. L</creator><creator>Roberts, R. M</creator><general>American Institute of Aeronautics and Astronautics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20130501</creationdate><title>Modeling the Gravitational Potential of a Nonspherical Asteroid</title><author>Herrera-Sucarrat, E ; Palmer, P. L ; Roberts, R. M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a410t-ef4feadc480b3239de16a43b10421f5de839b45f0e384b848f90cfbb6361db0b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Approximation</topic><topic>Asteroids</topic><topic>Bessel functions</topic><topic>Gravitation</topic><topic>Inertia</topic><topic>Laplace equation</topic><topic>Mathematical analysis</topic><topic>Poisson equation</topic><topic>Preserves</topic><topic>Spherical harmonics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Herrera-Sucarrat, E</creatorcontrib><creatorcontrib>Palmer, P. L</creatorcontrib><creatorcontrib>Roberts, R. M</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of guidance, control, and dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Herrera-Sucarrat, E</au><au>Palmer, P. L</au><au>Roberts, R. M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling the Gravitational Potential of a Nonspherical Asteroid</atitle><jtitle>Journal of guidance, control, and dynamics</jtitle><date>2013-05-01</date><risdate>2013</risdate><volume>36</volume><issue>3</issue><spage>790</spage><epage>798</epage><pages>790-798</pages><issn>0731-5090</issn><eissn>1533-3884</eissn><abstract>In this paper a simple and very general approximation of the gravitational potential for a nonspherical body is presented. The gravitational potential is expanded using spherical harmonics and spherical Bessel functions, and it satisfies Laplace’s equation outside the circumscribing sphere and Poisson’s equation inside the circumscribing sphere. Therefore, trajectories can be integrated near the surface of the asteroid, as well as far away from it. This paper focuses on the construction of a simple expansion of the gravitational potential that preserves the critical nonlinear dynamical behavior of other gravitational models for a nonspherical asteroid that are more complex and computationally more demanding.</abstract><cop>Reston</cop><pub>American Institute of Aeronautics and Astronautics</pub><doi>10.2514/1.58140</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0731-5090
ispartof Journal of guidance, control, and dynamics, 2013-05, Vol.36 (3), p.790-798
issn 0731-5090
1533-3884
language eng
recordid cdi_aiaa_journals_1_58140_pdf_fulltext
source Alma/SFX Local Collection
subjects Approximation
Asteroids
Bessel functions
Gravitation
Inertia
Laplace equation
Mathematical analysis
Poisson equation
Preserves
Spherical harmonics
title Modeling the Gravitational Potential of a Nonspherical Asteroid
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T08%3A08%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_aiaa_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20the%20Gravitational%20Potential%20of%20a%20Nonspherical%20Asteroid&rft.jtitle=Journal%20of%20guidance,%20control,%20and%20dynamics&rft.au=Herrera-Sucarrat,%20E&rft.date=2013-05-01&rft.volume=36&rft.issue=3&rft.spage=790&rft.epage=798&rft.pages=790-798&rft.issn=0731-5090&rft.eissn=1533-3884&rft_id=info:doi/10.2514/1.58140&rft_dat=%3Cproquest_aiaa_%3E2494704068%3C/proquest_aiaa_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1365278796&rft_id=info:pmid/&rfr_iscdi=true