Optimal Rendezvous Trajectories of a Controlled Spacecraft and a Tumbling Object
This paper formulates and solves the problem of minimum-time and minimum-energy optimal trajectories of rendezvous of a powered chaser and a passive tumbling target, in a circular orbit. Both translational and rotational dynamics are considered. In particular, ending conditions are imposed of matchi...
Gespeichert in:
Veröffentlicht in: | Journal of guidance, control, and dynamics control, and dynamics, 2011-07, Vol.34 (4), p.1239-1252 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper formulates and solves the problem of minimum-time and minimum-energy optimal trajectories of rendezvous of a powered chaser and a passive tumbling target, in a circular orbit. Both translational and rotational dynamics are considered. In particular, ending conditions are imposed of matching the positions and velocities of two points of interest onboard the vehicles. A collision-avoidance condition is imposed as well. The optimal control problems are analytically formulated through the use of the Pontryagin minimum principle. The problems are then solved numerically, by using a direct collocation method based on the Gauss pseudospectral approach. Finally, the obtained solutions are verified through the minimum principle, solved by a shooting method. The simulation results show that the pseudospectral solver provides solutions very close to the optimal ones, except in the case of presence of singular arcs when it may not provide a feasible solution. The computational time needed by the pseudospectral solver is a small fraction of the one needed by the indirect approach, but it is still considerably too large to allow for its use in real-time onboard guidance. [PUBLISHER ABSTRACT] |
---|---|
ISSN: | 0731-5090 1533-3884 |
DOI: | 10.2514/1.47645 |