Heat Release in Turbine Cooling II: Numerical Details of Secondary Combustion Surrounding Shaped Holes
Film cooling plays a critical role in providing effective thermal protection to components in modern gas turbine engines. Most of the previous studies on film cooling were conducted using either cylindrical or shaped coolant holes with nonreactive pure gases in the cross-stream flow. In this paper,...
Gespeichert in:
Veröffentlicht in: | Journal of propulsion and power 2011-03, Vol.27 (2), p.269-281 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 281 |
---|---|
container_issue | 2 |
container_start_page | 269 |
container_title | Journal of propulsion and power |
container_volume | 27 |
creator | Lin, Cheng-Xian Holder, Richard J Sekar, Balu Zelina, Joseph Polanka, Marc D Thornburg, Hugh J Briones, Alejandro M |
description | Film cooling plays a critical role in providing effective thermal protection to components in modern gas turbine engines. Most of the previous studies on film cooling were conducted using either cylindrical or shaped coolant holes with nonreactive pure gases in the cross-stream flow. In this paper, the chemically reactive film cooling over a surface with shaped coolant hole is investigated by a Reynolds-averaged Navier-Stokes approach with a shear-stress transport k- upsilon model to simulate the turbulent flow. To take into account the secondary combustion resulting from the unburned fuels in the crossflow, a two-step reaction scheme was used for the combustion of propane. An eddy-dissipation concept approach was used to account for the turbulence-chemistry interaction. The three-dimensional simulation was performed on an unstructured hybrid grid. The characteristics of reactive thermal flows, jet-crossflow interactions, species transport, and fuel consumption were investigated at different equivalence ratios and blowing ratios. Numerical results provide insight into where reactions take place and how fuel is consumed. |
doi_str_mv | 10.2514/1.45318 |
format | Article |
fullrecord | <record><control><sourceid>proquest_aiaa_</sourceid><recordid>TN_cdi_aiaa_journals_1_45318_pdf_fulltext</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1709787793</sourcerecordid><originalsourceid>FETCH-LOGICAL-a381t-11ba0d05078ce206fa48afc75590613a40d5412e4680704df2f63b5fdd9e03543</originalsourceid><addsrcrecordid>eNp90U2LFDEQBuAgCo6r-BcCCrqHXiudz_Ym4-oMLArOeg6ZTkWzZDpj0gH99_Y6grKIpxzy5K1UFSFPGVz0kolX7EJIzsw9smKS844bre6TFWhhOqGkeUge1XoDwJRRekXCBt1MP2FCV5HGiV63so8T0nXOKU5f6Hb7mn5oByxxdIm-xdnFVGkOdIdjnrwrPxZ62Lc6xzzRXSslt8nfvtx9dUf0dJMT1sfkQXCp4pPf5xn5_O7yer3prj6-367fXHWOGzZ3jO0deJCgzYg9qOCEcWHUUg6gGHcCvBSsR6EMaBA-9EHxvQzeDwhcCn5GXpxyjyV_a1hne4h1xJTchLlVa9RgeiMVLPLlfyXTMGij9cAX-uwOvcmtTEsflvHlKxKGgf0pPZZca8FgjyUelvlYBvZ2M5bZX5tZ5PlJuujcX1mna3v0wYaW0ozf58U-_6e9E_kTAdWXyg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1346850991</pqid></control><display><type>article</type><title>Heat Release in Turbine Cooling II: Numerical Details of Secondary Combustion Surrounding Shaped Holes</title><source>Alma/SFX Local Collection</source><creator>Lin, Cheng-Xian ; Holder, Richard J ; Sekar, Balu ; Zelina, Joseph ; Polanka, Marc D ; Thornburg, Hugh J ; Briones, Alejandro M</creator><contributor>Tan, C</contributor><creatorcontrib>Lin, Cheng-Xian ; Holder, Richard J ; Sekar, Balu ; Zelina, Joseph ; Polanka, Marc D ; Thornburg, Hugh J ; Briones, Alejandro M ; Tan, C</creatorcontrib><description>Film cooling plays a critical role in providing effective thermal protection to components in modern gas turbine engines. Most of the previous studies on film cooling were conducted using either cylindrical or shaped coolant holes with nonreactive pure gases in the cross-stream flow. In this paper, the chemically reactive film cooling over a surface with shaped coolant hole is investigated by a Reynolds-averaged Navier-Stokes approach with a shear-stress transport k- upsilon model to simulate the turbulent flow. To take into account the secondary combustion resulting from the unburned fuels in the crossflow, a two-step reaction scheme was used for the combustion of propane. An eddy-dissipation concept approach was used to account for the turbulence-chemistry interaction. The three-dimensional simulation was performed on an unstructured hybrid grid. The characteristics of reactive thermal flows, jet-crossflow interactions, species transport, and fuel consumption were investigated at different equivalence ratios and blowing ratios. Numerical results provide insight into where reactions take place and how fuel is consumed.</description><identifier>ISSN: 0748-4658</identifier><identifier>EISSN: 1533-3876</identifier><identifier>DOI: 10.2514/1.45318</identifier><identifier>CODEN: JPPOEL</identifier><language>eng</language><publisher>Reston: American Institute of Aeronautics and Astronautics</publisher><subject>Combustion ; Computer simulation ; Coolants ; Film cooling ; Fluid flow ; Fuels ; Navier-Stokes equations ; Turbulence ; Turbulent flow</subject><ispartof>Journal of propulsion and power, 2011-03, Vol.27 (2), p.269-281</ispartof><rights>Copyright American Institute of Aeronautics and Astronautics Mar-Apr 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a381t-11ba0d05078ce206fa48afc75590613a40d5412e4680704df2f63b5fdd9e03543</citedby><cites>FETCH-LOGICAL-a381t-11ba0d05078ce206fa48afc75590613a40d5412e4680704df2f63b5fdd9e03543</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><contributor>Tan, C</contributor><creatorcontrib>Lin, Cheng-Xian</creatorcontrib><creatorcontrib>Holder, Richard J</creatorcontrib><creatorcontrib>Sekar, Balu</creatorcontrib><creatorcontrib>Zelina, Joseph</creatorcontrib><creatorcontrib>Polanka, Marc D</creatorcontrib><creatorcontrib>Thornburg, Hugh J</creatorcontrib><creatorcontrib>Briones, Alejandro M</creatorcontrib><title>Heat Release in Turbine Cooling II: Numerical Details of Secondary Combustion Surrounding Shaped Holes</title><title>Journal of propulsion and power</title><description>Film cooling plays a critical role in providing effective thermal protection to components in modern gas turbine engines. Most of the previous studies on film cooling were conducted using either cylindrical or shaped coolant holes with nonreactive pure gases in the cross-stream flow. In this paper, the chemically reactive film cooling over a surface with shaped coolant hole is investigated by a Reynolds-averaged Navier-Stokes approach with a shear-stress transport k- upsilon model to simulate the turbulent flow. To take into account the secondary combustion resulting from the unburned fuels in the crossflow, a two-step reaction scheme was used for the combustion of propane. An eddy-dissipation concept approach was used to account for the turbulence-chemistry interaction. The three-dimensional simulation was performed on an unstructured hybrid grid. The characteristics of reactive thermal flows, jet-crossflow interactions, species transport, and fuel consumption were investigated at different equivalence ratios and blowing ratios. Numerical results provide insight into where reactions take place and how fuel is consumed.</description><subject>Combustion</subject><subject>Computer simulation</subject><subject>Coolants</subject><subject>Film cooling</subject><subject>Fluid flow</subject><subject>Fuels</subject><subject>Navier-Stokes equations</subject><subject>Turbulence</subject><subject>Turbulent flow</subject><issn>0748-4658</issn><issn>1533-3876</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp90U2LFDEQBuAgCo6r-BcCCrqHXiudz_Ym4-oMLArOeg6ZTkWzZDpj0gH99_Y6grKIpxzy5K1UFSFPGVz0kolX7EJIzsw9smKS844bre6TFWhhOqGkeUge1XoDwJRRekXCBt1MP2FCV5HGiV63so8T0nXOKU5f6Hb7mn5oByxxdIm-xdnFVGkOdIdjnrwrPxZ62Lc6xzzRXSslt8nfvtx9dUf0dJMT1sfkQXCp4pPf5xn5_O7yer3prj6-367fXHWOGzZ3jO0deJCgzYg9qOCEcWHUUg6gGHcCvBSsR6EMaBA-9EHxvQzeDwhcCn5GXpxyjyV_a1hne4h1xJTchLlVa9RgeiMVLPLlfyXTMGij9cAX-uwOvcmtTEsflvHlKxKGgf0pPZZca8FgjyUelvlYBvZ2M5bZX5tZ5PlJuujcX1mna3v0wYaW0ozf58U-_6e9E_kTAdWXyg</recordid><startdate>20110301</startdate><enddate>20110301</enddate><creator>Lin, Cheng-Xian</creator><creator>Holder, Richard J</creator><creator>Sekar, Balu</creator><creator>Zelina, Joseph</creator><creator>Polanka, Marc D</creator><creator>Thornburg, Hugh J</creator><creator>Briones, Alejandro M</creator><general>American Institute of Aeronautics and Astronautics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><scope>7QH</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope></search><sort><creationdate>20110301</creationdate><title>Heat Release in Turbine Cooling II: Numerical Details of Secondary Combustion Surrounding Shaped Holes</title><author>Lin, Cheng-Xian ; Holder, Richard J ; Sekar, Balu ; Zelina, Joseph ; Polanka, Marc D ; Thornburg, Hugh J ; Briones, Alejandro M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a381t-11ba0d05078ce206fa48afc75590613a40d5412e4680704df2f63b5fdd9e03543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Combustion</topic><topic>Computer simulation</topic><topic>Coolants</topic><topic>Film cooling</topic><topic>Fluid flow</topic><topic>Fuels</topic><topic>Navier-Stokes equations</topic><topic>Turbulence</topic><topic>Turbulent flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Cheng-Xian</creatorcontrib><creatorcontrib>Holder, Richard J</creatorcontrib><creatorcontrib>Sekar, Balu</creatorcontrib><creatorcontrib>Zelina, Joseph</creatorcontrib><creatorcontrib>Polanka, Marc D</creatorcontrib><creatorcontrib>Thornburg, Hugh J</creatorcontrib><creatorcontrib>Briones, Alejandro M</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>Journal of propulsion and power</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Cheng-Xian</au><au>Holder, Richard J</au><au>Sekar, Balu</au><au>Zelina, Joseph</au><au>Polanka, Marc D</au><au>Thornburg, Hugh J</au><au>Briones, Alejandro M</au><au>Tan, C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heat Release in Turbine Cooling II: Numerical Details of Secondary Combustion Surrounding Shaped Holes</atitle><jtitle>Journal of propulsion and power</jtitle><date>2011-03-01</date><risdate>2011</risdate><volume>27</volume><issue>2</issue><spage>269</spage><epage>281</epage><pages>269-281</pages><issn>0748-4658</issn><eissn>1533-3876</eissn><coden>JPPOEL</coden><abstract>Film cooling plays a critical role in providing effective thermal protection to components in modern gas turbine engines. Most of the previous studies on film cooling were conducted using either cylindrical or shaped coolant holes with nonreactive pure gases in the cross-stream flow. In this paper, the chemically reactive film cooling over a surface with shaped coolant hole is investigated by a Reynolds-averaged Navier-Stokes approach with a shear-stress transport k- upsilon model to simulate the turbulent flow. To take into account the secondary combustion resulting from the unburned fuels in the crossflow, a two-step reaction scheme was used for the combustion of propane. An eddy-dissipation concept approach was used to account for the turbulence-chemistry interaction. The three-dimensional simulation was performed on an unstructured hybrid grid. The characteristics of reactive thermal flows, jet-crossflow interactions, species transport, and fuel consumption were investigated at different equivalence ratios and blowing ratios. Numerical results provide insight into where reactions take place and how fuel is consumed.</abstract><cop>Reston</cop><pub>American Institute of Aeronautics and Astronautics</pub><doi>10.2514/1.45318</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0748-4658 |
ispartof | Journal of propulsion and power, 2011-03, Vol.27 (2), p.269-281 |
issn | 0748-4658 1533-3876 |
language | eng |
recordid | cdi_aiaa_journals_1_45318_pdf_fulltext |
source | Alma/SFX Local Collection |
subjects | Combustion Computer simulation Coolants Film cooling Fluid flow Fuels Navier-Stokes equations Turbulence Turbulent flow |
title | Heat Release in Turbine Cooling II: Numerical Details of Secondary Combustion Surrounding Shaped Holes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T23%3A25%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_aiaa_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heat%20Release%20in%20Turbine%20Cooling%20II:%20Numerical%20Details%20of%20Secondary%20Combustion%20Surrounding%20Shaped%20Holes&rft.jtitle=Journal%20of%20propulsion%20and%20power&rft.au=Lin,%20Cheng-Xian&rft.date=2011-03-01&rft.volume=27&rft.issue=2&rft.spage=269&rft.epage=281&rft.pages=269-281&rft.issn=0748-4658&rft.eissn=1533-3876&rft.coden=JPPOEL&rft_id=info:doi/10.2514/1.45318&rft_dat=%3Cproquest_aiaa_%3E1709787793%3C/proquest_aiaa_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1346850991&rft_id=info:pmid/&rfr_iscdi=true |