Heat Release in Turbine Cooling II: Numerical Details of Secondary Combustion Surrounding Shaped Holes

Film cooling plays a critical role in providing effective thermal protection to components in modern gas turbine engines. Most of the previous studies on film cooling were conducted using either cylindrical or shaped coolant holes with nonreactive pure gases in the cross-stream flow. In this paper,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of propulsion and power 2011-03, Vol.27 (2), p.269-281
Hauptverfasser: Lin, Cheng-Xian, Holder, Richard J, Sekar, Balu, Zelina, Joseph, Polanka, Marc D, Thornburg, Hugh J, Briones, Alejandro M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 281
container_issue 2
container_start_page 269
container_title Journal of propulsion and power
container_volume 27
creator Lin, Cheng-Xian
Holder, Richard J
Sekar, Balu
Zelina, Joseph
Polanka, Marc D
Thornburg, Hugh J
Briones, Alejandro M
description Film cooling plays a critical role in providing effective thermal protection to components in modern gas turbine engines. Most of the previous studies on film cooling were conducted using either cylindrical or shaped coolant holes with nonreactive pure gases in the cross-stream flow. In this paper, the chemically reactive film cooling over a surface with shaped coolant hole is investigated by a Reynolds-averaged Navier-Stokes approach with a shear-stress transport k- upsilon model to simulate the turbulent flow. To take into account the secondary combustion resulting from the unburned fuels in the crossflow, a two-step reaction scheme was used for the combustion of propane. An eddy-dissipation concept approach was used to account for the turbulence-chemistry interaction. The three-dimensional simulation was performed on an unstructured hybrid grid. The characteristics of reactive thermal flows, jet-crossflow interactions, species transport, and fuel consumption were investigated at different equivalence ratios and blowing ratios. Numerical results provide insight into where reactions take place and how fuel is consumed.
doi_str_mv 10.2514/1.45318
format Article
fullrecord <record><control><sourceid>proquest_aiaa_</sourceid><recordid>TN_cdi_aiaa_journals_1_45318_pdf_fulltext</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1709787793</sourcerecordid><originalsourceid>FETCH-LOGICAL-a381t-11ba0d05078ce206fa48afc75590613a40d5412e4680704df2f63b5fdd9e03543</originalsourceid><addsrcrecordid>eNp90U2LFDEQBuAgCo6r-BcCCrqHXiudz_Ym4-oMLArOeg6ZTkWzZDpj0gH99_Y6grKIpxzy5K1UFSFPGVz0kolX7EJIzsw9smKS844bre6TFWhhOqGkeUge1XoDwJRRekXCBt1MP2FCV5HGiV63so8T0nXOKU5f6Hb7mn5oByxxdIm-xdnFVGkOdIdjnrwrPxZ62Lc6xzzRXSslt8nfvtx9dUf0dJMT1sfkQXCp4pPf5xn5_O7yer3prj6-367fXHWOGzZ3jO0deJCgzYg9qOCEcWHUUg6gGHcCvBSsR6EMaBA-9EHxvQzeDwhcCn5GXpxyjyV_a1hne4h1xJTchLlVa9RgeiMVLPLlfyXTMGij9cAX-uwOvcmtTEsflvHlKxKGgf0pPZZca8FgjyUelvlYBvZ2M5bZX5tZ5PlJuujcX1mna3v0wYaW0ozf58U-_6e9E_kTAdWXyg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1346850991</pqid></control><display><type>article</type><title>Heat Release in Turbine Cooling II: Numerical Details of Secondary Combustion Surrounding Shaped Holes</title><source>Alma/SFX Local Collection</source><creator>Lin, Cheng-Xian ; Holder, Richard J ; Sekar, Balu ; Zelina, Joseph ; Polanka, Marc D ; Thornburg, Hugh J ; Briones, Alejandro M</creator><contributor>Tan, C</contributor><creatorcontrib>Lin, Cheng-Xian ; Holder, Richard J ; Sekar, Balu ; Zelina, Joseph ; Polanka, Marc D ; Thornburg, Hugh J ; Briones, Alejandro M ; Tan, C</creatorcontrib><description>Film cooling plays a critical role in providing effective thermal protection to components in modern gas turbine engines. Most of the previous studies on film cooling were conducted using either cylindrical or shaped coolant holes with nonreactive pure gases in the cross-stream flow. In this paper, the chemically reactive film cooling over a surface with shaped coolant hole is investigated by a Reynolds-averaged Navier-Stokes approach with a shear-stress transport k- upsilon model to simulate the turbulent flow. To take into account the secondary combustion resulting from the unburned fuels in the crossflow, a two-step reaction scheme was used for the combustion of propane. An eddy-dissipation concept approach was used to account for the turbulence-chemistry interaction. The three-dimensional simulation was performed on an unstructured hybrid grid. The characteristics of reactive thermal flows, jet-crossflow interactions, species transport, and fuel consumption were investigated at different equivalence ratios and blowing ratios. Numerical results provide insight into where reactions take place and how fuel is consumed.</description><identifier>ISSN: 0748-4658</identifier><identifier>EISSN: 1533-3876</identifier><identifier>DOI: 10.2514/1.45318</identifier><identifier>CODEN: JPPOEL</identifier><language>eng</language><publisher>Reston: American Institute of Aeronautics and Astronautics</publisher><subject>Combustion ; Computer simulation ; Coolants ; Film cooling ; Fluid flow ; Fuels ; Navier-Stokes equations ; Turbulence ; Turbulent flow</subject><ispartof>Journal of propulsion and power, 2011-03, Vol.27 (2), p.269-281</ispartof><rights>Copyright American Institute of Aeronautics and Astronautics Mar-Apr 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a381t-11ba0d05078ce206fa48afc75590613a40d5412e4680704df2f63b5fdd9e03543</citedby><cites>FETCH-LOGICAL-a381t-11ba0d05078ce206fa48afc75590613a40d5412e4680704df2f63b5fdd9e03543</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><contributor>Tan, C</contributor><creatorcontrib>Lin, Cheng-Xian</creatorcontrib><creatorcontrib>Holder, Richard J</creatorcontrib><creatorcontrib>Sekar, Balu</creatorcontrib><creatorcontrib>Zelina, Joseph</creatorcontrib><creatorcontrib>Polanka, Marc D</creatorcontrib><creatorcontrib>Thornburg, Hugh J</creatorcontrib><creatorcontrib>Briones, Alejandro M</creatorcontrib><title>Heat Release in Turbine Cooling II: Numerical Details of Secondary Combustion Surrounding Shaped Holes</title><title>Journal of propulsion and power</title><description>Film cooling plays a critical role in providing effective thermal protection to components in modern gas turbine engines. Most of the previous studies on film cooling were conducted using either cylindrical or shaped coolant holes with nonreactive pure gases in the cross-stream flow. In this paper, the chemically reactive film cooling over a surface with shaped coolant hole is investigated by a Reynolds-averaged Navier-Stokes approach with a shear-stress transport k- upsilon model to simulate the turbulent flow. To take into account the secondary combustion resulting from the unburned fuels in the crossflow, a two-step reaction scheme was used for the combustion of propane. An eddy-dissipation concept approach was used to account for the turbulence-chemistry interaction. The three-dimensional simulation was performed on an unstructured hybrid grid. The characteristics of reactive thermal flows, jet-crossflow interactions, species transport, and fuel consumption were investigated at different equivalence ratios and blowing ratios. Numerical results provide insight into where reactions take place and how fuel is consumed.</description><subject>Combustion</subject><subject>Computer simulation</subject><subject>Coolants</subject><subject>Film cooling</subject><subject>Fluid flow</subject><subject>Fuels</subject><subject>Navier-Stokes equations</subject><subject>Turbulence</subject><subject>Turbulent flow</subject><issn>0748-4658</issn><issn>1533-3876</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp90U2LFDEQBuAgCo6r-BcCCrqHXiudz_Ym4-oMLArOeg6ZTkWzZDpj0gH99_Y6grKIpxzy5K1UFSFPGVz0kolX7EJIzsw9smKS844bre6TFWhhOqGkeUge1XoDwJRRekXCBt1MP2FCV5HGiV63so8T0nXOKU5f6Hb7mn5oByxxdIm-xdnFVGkOdIdjnrwrPxZ62Lc6xzzRXSslt8nfvtx9dUf0dJMT1sfkQXCp4pPf5xn5_O7yer3prj6-367fXHWOGzZ3jO0deJCgzYg9qOCEcWHUUg6gGHcCvBSsR6EMaBA-9EHxvQzeDwhcCn5GXpxyjyV_a1hne4h1xJTchLlVa9RgeiMVLPLlfyXTMGij9cAX-uwOvcmtTEsflvHlKxKGgf0pPZZca8FgjyUelvlYBvZ2M5bZX5tZ5PlJuujcX1mna3v0wYaW0ozf58U-_6e9E_kTAdWXyg</recordid><startdate>20110301</startdate><enddate>20110301</enddate><creator>Lin, Cheng-Xian</creator><creator>Holder, Richard J</creator><creator>Sekar, Balu</creator><creator>Zelina, Joseph</creator><creator>Polanka, Marc D</creator><creator>Thornburg, Hugh J</creator><creator>Briones, Alejandro M</creator><general>American Institute of Aeronautics and Astronautics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><scope>7QH</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope></search><sort><creationdate>20110301</creationdate><title>Heat Release in Turbine Cooling II: Numerical Details of Secondary Combustion Surrounding Shaped Holes</title><author>Lin, Cheng-Xian ; Holder, Richard J ; Sekar, Balu ; Zelina, Joseph ; Polanka, Marc D ; Thornburg, Hugh J ; Briones, Alejandro M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a381t-11ba0d05078ce206fa48afc75590613a40d5412e4680704df2f63b5fdd9e03543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Combustion</topic><topic>Computer simulation</topic><topic>Coolants</topic><topic>Film cooling</topic><topic>Fluid flow</topic><topic>Fuels</topic><topic>Navier-Stokes equations</topic><topic>Turbulence</topic><topic>Turbulent flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Cheng-Xian</creatorcontrib><creatorcontrib>Holder, Richard J</creatorcontrib><creatorcontrib>Sekar, Balu</creatorcontrib><creatorcontrib>Zelina, Joseph</creatorcontrib><creatorcontrib>Polanka, Marc D</creatorcontrib><creatorcontrib>Thornburg, Hugh J</creatorcontrib><creatorcontrib>Briones, Alejandro M</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Journal of propulsion and power</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Cheng-Xian</au><au>Holder, Richard J</au><au>Sekar, Balu</au><au>Zelina, Joseph</au><au>Polanka, Marc D</au><au>Thornburg, Hugh J</au><au>Briones, Alejandro M</au><au>Tan, C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heat Release in Turbine Cooling II: Numerical Details of Secondary Combustion Surrounding Shaped Holes</atitle><jtitle>Journal of propulsion and power</jtitle><date>2011-03-01</date><risdate>2011</risdate><volume>27</volume><issue>2</issue><spage>269</spage><epage>281</epage><pages>269-281</pages><issn>0748-4658</issn><eissn>1533-3876</eissn><coden>JPPOEL</coden><abstract>Film cooling plays a critical role in providing effective thermal protection to components in modern gas turbine engines. Most of the previous studies on film cooling were conducted using either cylindrical or shaped coolant holes with nonreactive pure gases in the cross-stream flow. In this paper, the chemically reactive film cooling over a surface with shaped coolant hole is investigated by a Reynolds-averaged Navier-Stokes approach with a shear-stress transport k- upsilon model to simulate the turbulent flow. To take into account the secondary combustion resulting from the unburned fuels in the crossflow, a two-step reaction scheme was used for the combustion of propane. An eddy-dissipation concept approach was used to account for the turbulence-chemistry interaction. The three-dimensional simulation was performed on an unstructured hybrid grid. The characteristics of reactive thermal flows, jet-crossflow interactions, species transport, and fuel consumption were investigated at different equivalence ratios and blowing ratios. Numerical results provide insight into where reactions take place and how fuel is consumed.</abstract><cop>Reston</cop><pub>American Institute of Aeronautics and Astronautics</pub><doi>10.2514/1.45318</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0748-4658
ispartof Journal of propulsion and power, 2011-03, Vol.27 (2), p.269-281
issn 0748-4658
1533-3876
language eng
recordid cdi_aiaa_journals_1_45318_pdf_fulltext
source Alma/SFX Local Collection
subjects Combustion
Computer simulation
Coolants
Film cooling
Fluid flow
Fuels
Navier-Stokes equations
Turbulence
Turbulent flow
title Heat Release in Turbine Cooling II: Numerical Details of Secondary Combustion Surrounding Shaped Holes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T23%3A25%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_aiaa_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heat%20Release%20in%20Turbine%20Cooling%20II:%20Numerical%20Details%20of%20Secondary%20Combustion%20Surrounding%20Shaped%20Holes&rft.jtitle=Journal%20of%20propulsion%20and%20power&rft.au=Lin,%20Cheng-Xian&rft.date=2011-03-01&rft.volume=27&rft.issue=2&rft.spage=269&rft.epage=281&rft.pages=269-281&rft.issn=0748-4658&rft.eissn=1533-3876&rft.coden=JPPOEL&rft_id=info:doi/10.2514/1.45318&rft_dat=%3Cproquest_aiaa_%3E1709787793%3C/proquest_aiaa_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1346850991&rft_id=info:pmid/&rfr_iscdi=true