Some two-mode buckling problems and their relation to catastrophe theory

The asymptotic buckling analysis of semisymmetric, two-degree-of-freedom static systems is presented. The types of behavior which can occur for this class of system are determined and categorized in accordance with the results of catastrophe theory. The expressions for the critical load-initial impe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIAA journal 1977-11, Vol.15 (11), p.1638-1644
1. Verfasser: Hansen, Jorn S.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1644
container_issue 11
container_start_page 1638
container_title AIAA journal
container_volume 15
creator Hansen, Jorn S.
description The asymptotic buckling analysis of semisymmetric, two-degree-of-freedom static systems is presented. The types of behavior which can occur for this class of system are determined and categorized in accordance with the results of catastrophe theory. The expressions for the critical load-initial imperfection surfaces are determined in closed form. Within the context of an asymptotic analysis all possible secondary bifurcations cases are isolated. (The term bifurcation is used here in the sense which is usual in elastic stability analyses and not in the broader sense which is common in catastrophe theory.) In addition, the physical significance of the different critical load-initial imperfection surfaces is determined, and the primary surface is identified for each case. The general results are demonstrated in the example of the two-mode buckling of an axially loaded beam resting on a nonlinear elastic foundation.
doi_str_mv 10.2514/3.7463
format Article
fullrecord <record><control><sourceid>proquest_aiaa_</sourceid><recordid>TN_cdi_aiaa_journals_10_2514_3_7463</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>22945976</sourcerecordid><originalsourceid>FETCH-LOGICAL-a228t-fd9181e710037c6aad480598810eebfb7f148a159ccef48dee7656e7cc6b21633</originalsourceid><addsrcrecordid>eNptkF9LwzAUxYMoOKd-hoAgvnTmT9OkjzLUCQMfVPAtpOmN62ybmaTovr0dEwTx6XA5Pw73HITOKZkxQfNrPpN5wQ_QhArOM67E6yGaEEJoRnPBjtFJjOvxYlLRCVo8-Q5w-vRZ52vA1WDf26Z_w5vgqxa6iE1f47SCJuAArUmN73Hy2JpkYgp-s4Kd68P2FB0500Y4-9Eperm7fZ4vsuXj_cP8ZpkZxlTKXF1SRUFSQri0hTF1rogolaIEoHKVdDRXhorSWnC5qgFkIQqQ1hYVowXnU3S5zx0__BggJt010ULbmh78EDVjZS5KWfyCNvgYAzi9CU1nwlZTondDaa53Q43g1R40jTF67YfQjwV-XL2pnXZD2yb4SiN68R_6J_AbIyB0Tg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>22945976</pqid></control><display><type>article</type><title>Some two-mode buckling problems and their relation to catastrophe theory</title><source>Alma/SFX Local Collection</source><creator>Hansen, Jorn S.</creator><creatorcontrib>Hansen, Jorn S.</creatorcontrib><description>The asymptotic buckling analysis of semisymmetric, two-degree-of-freedom static systems is presented. The types of behavior which can occur for this class of system are determined and categorized in accordance with the results of catastrophe theory. The expressions for the critical load-initial imperfection surfaces are determined in closed form. Within the context of an asymptotic analysis all possible secondary bifurcations cases are isolated. (The term bifurcation is used here in the sense which is usual in elastic stability analyses and not in the broader sense which is common in catastrophe theory.) In addition, the physical significance of the different critical load-initial imperfection surfaces is determined, and the primary surface is identified for each case. The general results are demonstrated in the example of the two-mode buckling of an axially loaded beam resting on a nonlinear elastic foundation.</description><identifier>ISSN: 0001-1452</identifier><identifier>EISSN: 1533-385X</identifier><identifier>DOI: 10.2514/3.7463</identifier><language>eng</language><ispartof>AIAA journal, 1977-11, Vol.15 (11), p.1638-1644</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a228t-fd9181e710037c6aad480598810eebfb7f148a159ccef48dee7656e7cc6b21633</citedby><cites>FETCH-LOGICAL-a228t-fd9181e710037c6aad480598810eebfb7f148a159ccef48dee7656e7cc6b21633</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Hansen, Jorn S.</creatorcontrib><title>Some two-mode buckling problems and their relation to catastrophe theory</title><title>AIAA journal</title><description>The asymptotic buckling analysis of semisymmetric, two-degree-of-freedom static systems is presented. The types of behavior which can occur for this class of system are determined and categorized in accordance with the results of catastrophe theory. The expressions for the critical load-initial imperfection surfaces are determined in closed form. Within the context of an asymptotic analysis all possible secondary bifurcations cases are isolated. (The term bifurcation is used here in the sense which is usual in elastic stability analyses and not in the broader sense which is common in catastrophe theory.) In addition, the physical significance of the different critical load-initial imperfection surfaces is determined, and the primary surface is identified for each case. The general results are demonstrated in the example of the two-mode buckling of an axially loaded beam resting on a nonlinear elastic foundation.</description><issn>0001-1452</issn><issn>1533-385X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1977</creationdate><recordtype>article</recordtype><recordid>eNptkF9LwzAUxYMoOKd-hoAgvnTmT9OkjzLUCQMfVPAtpOmN62ybmaTovr0dEwTx6XA5Pw73HITOKZkxQfNrPpN5wQ_QhArOM67E6yGaEEJoRnPBjtFJjOvxYlLRCVo8-Q5w-vRZ52vA1WDf26Z_w5vgqxa6iE1f47SCJuAArUmN73Hy2JpkYgp-s4Kd68P2FB0500Y4-9Eperm7fZ4vsuXj_cP8ZpkZxlTKXF1SRUFSQri0hTF1rogolaIEoHKVdDRXhorSWnC5qgFkIQqQ1hYVowXnU3S5zx0__BggJt010ULbmh78EDVjZS5KWfyCNvgYAzi9CU1nwlZTondDaa53Q43g1R40jTF67YfQjwV-XL2pnXZD2yb4SiN68R_6J_AbIyB0Tg</recordid><startdate>19771101</startdate><enddate>19771101</enddate><creator>Hansen, Jorn S.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>19771101</creationdate><title>Some two-mode buckling problems and their relation to catastrophe theory</title><author>Hansen, Jorn S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a228t-fd9181e710037c6aad480598810eebfb7f148a159ccef48dee7656e7cc6b21633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1977</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hansen, Jorn S.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>AIAA journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hansen, Jorn S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Some two-mode buckling problems and their relation to catastrophe theory</atitle><jtitle>AIAA journal</jtitle><date>1977-11-01</date><risdate>1977</risdate><volume>15</volume><issue>11</issue><spage>1638</spage><epage>1644</epage><pages>1638-1644</pages><issn>0001-1452</issn><eissn>1533-385X</eissn><abstract>The asymptotic buckling analysis of semisymmetric, two-degree-of-freedom static systems is presented. The types of behavior which can occur for this class of system are determined and categorized in accordance with the results of catastrophe theory. The expressions for the critical load-initial imperfection surfaces are determined in closed form. Within the context of an asymptotic analysis all possible secondary bifurcations cases are isolated. (The term bifurcation is used here in the sense which is usual in elastic stability analyses and not in the broader sense which is common in catastrophe theory.) In addition, the physical significance of the different critical load-initial imperfection surfaces is determined, and the primary surface is identified for each case. The general results are demonstrated in the example of the two-mode buckling of an axially loaded beam resting on a nonlinear elastic foundation.</abstract><doi>10.2514/3.7463</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0001-1452
ispartof AIAA journal, 1977-11, Vol.15 (11), p.1638-1644
issn 0001-1452
1533-385X
language eng
recordid cdi_aiaa_journals_10_2514_3_7463
source Alma/SFX Local Collection
title Some two-mode buckling problems and their relation to catastrophe theory
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T08%3A23%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_aiaa_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Some%20two-mode%20buckling%20problems%20and%20their%20relation%20to%20catastrophe%20theory&rft.jtitle=AIAA%20journal&rft.au=Hansen,%20Jorn%20S.&rft.date=1977-11-01&rft.volume=15&rft.issue=11&rft.spage=1638&rft.epage=1644&rft.pages=1638-1644&rft.issn=0001-1452&rft.eissn=1533-385X&rft_id=info:doi/10.2514/3.7463&rft_dat=%3Cproquest_aiaa_%3E22945976%3C/proquest_aiaa_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=22945976&rft_id=info:pmid/&rfr_iscdi=true