Load distribution on deformed wings in supersonic flow

Arbitrary deformations which include the special cases of wing camber and twist provide unique problems to the analyst when localized loadings are to be determined. Other than twist and camber, deformations in the lifting surfaces may occur from high loadings due to severe maneuverability requiremen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of aircraft 1982-11, Vol.19 (11), p.921-927
1. Verfasser: Burkhalter, John E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 927
container_issue 11
container_start_page 921
container_title Journal of aircraft
container_volume 19
creator Burkhalter, John E
description Arbitrary deformations which include the special cases of wing camber and twist provide unique problems to the analyst when localized loadings are to be determined. Other than twist and camber, deformations in the lifting surfaces may occur from high loadings due to severe maneuverability requirements or from aerodynamic heating or combinations thereof. Existing supersonic potential flow theories appear to be inadequate in predicting pressures under these conditions and numerical finite-difference methods have excessive computer requirements if the whole three-dimensional wing is modeled. In the present work a new method is presented which retains the simplicity of three-dimensional potential flow theories yet incorporates desirable features of finite-element techniques. The method utilizes planar three-dimensional finite wing theory overlaid with vorticity paneling to account for perturbations due to the deformations. The solution is stable (nonoscillatory) and requires minimal computer time and storage. Results for three deformed mean lines for two separate planform geometries are presented with excellent agreement with experimental data.
doi_str_mv 10.2514/3.44793
format Article
fullrecord <record><control><sourceid>proquest_aiaa_</sourceid><recordid>TN_cdi_aiaa_journals_10_2514_3_44793</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>23430535</sourcerecordid><originalsourceid>FETCH-LOGICAL-a380t-496f5a30f735d2e64de0402b0a48274bc6844d71613b31b6b947548f058654fc3</originalsourceid><addsrcrecordid>eNqN0E1LxDAQBuAgCq6r-Bd6EMVD12ky-dijLH7Bghc9h7RNJEu3qUnL6r-3ugteFhEG5jAP78BLyHkBM8oLvGEzRDlnB2RScMZypoQ6JBMAWuRKiPkxOUlpBQAKpJwQsQymzmqf-ujLofehzcaprQtxbets49u3lPk2S0NnYwqtrzLXhM0pOXKmSfZst6fk9f7uZfGYL58fnha3y9wwBX2Oc-G4YeAk4zW1AmsLCLQEg4pKLCuhEGtZiIKVrChFOUfJUTngSnB0FZuSq21uF8P7YFOv1z5VtmlMa8OQtEQUCALEKC__lJQhA874fyAVAunv7yqGlKJ1uot-beKnLkB_V62Z_ql6lBdbabwxehWG2I6l7GHX-9jurLvaaTc0TW8_evYFHl-Hvg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>23426642</pqid></control><display><type>article</type><title>Load distribution on deformed wings in supersonic flow</title><source>Alma/SFX Local Collection</source><creator>Burkhalter, John E</creator><creatorcontrib>Burkhalter, John E</creatorcontrib><description>Arbitrary deformations which include the special cases of wing camber and twist provide unique problems to the analyst when localized loadings are to be determined. Other than twist and camber, deformations in the lifting surfaces may occur from high loadings due to severe maneuverability requirements or from aerodynamic heating or combinations thereof. Existing supersonic potential flow theories appear to be inadequate in predicting pressures under these conditions and numerical finite-difference methods have excessive computer requirements if the whole three-dimensional wing is modeled. In the present work a new method is presented which retains the simplicity of three-dimensional potential flow theories yet incorporates desirable features of finite-element techniques. The method utilizes planar three-dimensional finite wing theory overlaid with vorticity paneling to account for perturbations due to the deformations. The solution is stable (nonoscillatory) and requires minimal computer time and storage. Results for three deformed mean lines for two separate planform geometries are presented with excellent agreement with experimental data.</description><identifier>ISSN: 0021-8669</identifier><identifier>EISSN: 1533-3868</identifier><identifier>DOI: 10.2514/3.44793</identifier><language>eng</language><subject>aerodynamics ; computer aided analysis ; deformation ; finite element method ; loading ; wings</subject><ispartof>Journal of aircraft, 1982-11, Vol.19 (11), p.921-927</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a380t-496f5a30f735d2e64de0402b0a48274bc6844d71613b31b6b947548f058654fc3</citedby><cites>FETCH-LOGICAL-a380t-496f5a30f735d2e64de0402b0a48274bc6844d71613b31b6b947548f058654fc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Burkhalter, John E</creatorcontrib><title>Load distribution on deformed wings in supersonic flow</title><title>Journal of aircraft</title><description>Arbitrary deformations which include the special cases of wing camber and twist provide unique problems to the analyst when localized loadings are to be determined. Other than twist and camber, deformations in the lifting surfaces may occur from high loadings due to severe maneuverability requirements or from aerodynamic heating or combinations thereof. Existing supersonic potential flow theories appear to be inadequate in predicting pressures under these conditions and numerical finite-difference methods have excessive computer requirements if the whole three-dimensional wing is modeled. In the present work a new method is presented which retains the simplicity of three-dimensional potential flow theories yet incorporates desirable features of finite-element techniques. The method utilizes planar three-dimensional finite wing theory overlaid with vorticity paneling to account for perturbations due to the deformations. The solution is stable (nonoscillatory) and requires minimal computer time and storage. Results for three deformed mean lines for two separate planform geometries are presented with excellent agreement with experimental data.</description><subject>aerodynamics</subject><subject>computer aided analysis</subject><subject>deformation</subject><subject>finite element method</subject><subject>loading</subject><subject>wings</subject><issn>0021-8669</issn><issn>1533-3868</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1982</creationdate><recordtype>article</recordtype><recordid>eNqN0E1LxDAQBuAgCq6r-Bd6EMVD12ky-dijLH7Bghc9h7RNJEu3qUnL6r-3ugteFhEG5jAP78BLyHkBM8oLvGEzRDlnB2RScMZypoQ6JBMAWuRKiPkxOUlpBQAKpJwQsQymzmqf-ujLofehzcaprQtxbets49u3lPk2S0NnYwqtrzLXhM0pOXKmSfZst6fk9f7uZfGYL58fnha3y9wwBX2Oc-G4YeAk4zW1AmsLCLQEg4pKLCuhEGtZiIKVrChFOUfJUTngSnB0FZuSq21uF8P7YFOv1z5VtmlMa8OQtEQUCALEKC__lJQhA874fyAVAunv7yqGlKJ1uot-beKnLkB_V62Z_ql6lBdbabwxehWG2I6l7GHX-9jurLvaaTc0TW8_evYFHl-Hvg</recordid><startdate>19821101</startdate><enddate>19821101</enddate><creator>Burkhalter, John E</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><scope>7TC</scope></search><sort><creationdate>19821101</creationdate><title>Load distribution on deformed wings in supersonic flow</title><author>Burkhalter, John E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a380t-496f5a30f735d2e64de0402b0a48274bc6844d71613b31b6b947548f058654fc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1982</creationdate><topic>aerodynamics</topic><topic>computer aided analysis</topic><topic>deformation</topic><topic>finite element method</topic><topic>loading</topic><topic>wings</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Burkhalter, John E</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Mechanical Engineering Abstracts</collection><jtitle>Journal of aircraft</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Burkhalter, John E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Load distribution on deformed wings in supersonic flow</atitle><jtitle>Journal of aircraft</jtitle><date>1982-11-01</date><risdate>1982</risdate><volume>19</volume><issue>11</issue><spage>921</spage><epage>927</epage><pages>921-927</pages><issn>0021-8669</issn><eissn>1533-3868</eissn><abstract>Arbitrary deformations which include the special cases of wing camber and twist provide unique problems to the analyst when localized loadings are to be determined. Other than twist and camber, deformations in the lifting surfaces may occur from high loadings due to severe maneuverability requirements or from aerodynamic heating or combinations thereof. Existing supersonic potential flow theories appear to be inadequate in predicting pressures under these conditions and numerical finite-difference methods have excessive computer requirements if the whole three-dimensional wing is modeled. In the present work a new method is presented which retains the simplicity of three-dimensional potential flow theories yet incorporates desirable features of finite-element techniques. The method utilizes planar three-dimensional finite wing theory overlaid with vorticity paneling to account for perturbations due to the deformations. The solution is stable (nonoscillatory) and requires minimal computer time and storage. Results for three deformed mean lines for two separate planform geometries are presented with excellent agreement with experimental data.</abstract><doi>10.2514/3.44793</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-8669
ispartof Journal of aircraft, 1982-11, Vol.19 (11), p.921-927
issn 0021-8669
1533-3868
language eng
recordid cdi_aiaa_journals_10_2514_3_44793
source Alma/SFX Local Collection
subjects aerodynamics
computer aided analysis
deformation
finite element method
loading
wings
title Load distribution on deformed wings in supersonic flow
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T18%3A28%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_aiaa_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Load%20distribution%20on%20deformed%20wings%20in%20supersonic%20flow&rft.jtitle=Journal%20of%20aircraft&rft.au=Burkhalter,%20John%20E&rft.date=1982-11-01&rft.volume=19&rft.issue=11&rft.spage=921&rft.epage=927&rft.pages=921-927&rft.issn=0021-8669&rft.eissn=1533-3868&rft_id=info:doi/10.2514/3.44793&rft_dat=%3Cproquest_aiaa_%3E23430535%3C/proquest_aiaa_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=23426642&rft_id=info:pmid/&rfr_iscdi=true