Robust Control of Linearized Poiseuille Flow
An approach to feedback control of linearized planar Poiseuille flow using H sub( infinity ) control is developed. Surface transpiration is used to control the flow, and point measurements of the wall shear stress are assumed to monitor its state. A high- but finite-dimensional model is obtained via...
Gespeichert in:
Veröffentlicht in: | Journal of guidance, control, and dynamics control, and dynamics, 2002-01, Vol.25 (1), p.145-151 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 151 |
---|---|
container_issue | 1 |
container_start_page | 145 |
container_title | Journal of guidance, control, and dynamics |
container_volume | 25 |
creator | Lubom-egrave Baramov, r Tutty, Owen R Rogers, Eric |
description | An approach to feedback control of linearized planar Poiseuille flow using H sub( infinity ) control is developed. Surface transpiration is used to control the flow, and point measurements of the wall shear stress are assumed to monitor its state. A high- but finite-dimensional model is obtained via a Galerkin procedure, and this model is approximated by a low-dimensional one using Hankel-optimal model reduction. For the purpose of control design, the flow is modeled as an interconnection of this low-dimensional system and a perturbation, reflecting the uncertainty in the model. The goal of control design is to achieve robust stability, that is, to stabilize any combination of the nominal plant and a feasible perturbation, and to satisfy certain performance requirements. Two different types of surface actuation are considered, harmonic transpiration and a model of a pair of suction/blowing panels. It is found that the latter is more efficient in suppressing disturbances in terms of the control effort required. |
doi_str_mv | 10.2514/2.4859 |
format | Article |
fullrecord | <record><control><sourceid>proquest_aiaa_</sourceid><recordid>TN_cdi_aiaa_journals_10_2514_2_4859</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>745733727</sourcerecordid><originalsourceid>FETCH-LOGICAL-a434t-b71bd5dcf280b74cb03db2574d64e931394924e51e81e2cfd96a20a73348d9503</originalsourceid><addsrcrecordid>eNqN0UtLAzEQB_AgCtaqn2FBfBzcmudmc5RiVSgooueQ3SSQkm5qsouPT--WFhZUxNMc5sd_ZhgAjhGcYIboFZ7QkokdMEKMkJyUJd0FI8gJyhkUcB8cpLSAEJEC8RG4fApVl9psGpo2Bp8Fm81dY1R0n0Znj8El0znvTTbz4e0Q7Fnlkzna1jF4md08T-_y-cPt_fR6nitKaJtXHFWa6driElac1hUkusKMU11QIwgiggpMDUOmRAbXVotCYag4IbTUgkEyBueb3FUMr51JrVy6VBvvVWNClySnrMcc816e_SkxL7gQRfkviAjDPTz5Bhehi01_rsT96lwUhWBDXB1DStFYuYpuqeKHRFCuvyCxXH-hh6fbOJVq5W1UTe3SoCmmVBA2jFVOqWHkj7SL39SmK1faStt535r3lnwBLP-cGQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2313796695</pqid></control><display><type>article</type><title>Robust Control of Linearized Poiseuille Flow</title><source>Alma/SFX Local Collection</source><creator>Lubom-egrave ; Baramov, r ; Tutty, Owen R ; Rogers, Eric</creator><creatorcontrib>Lubom-egrave ; Baramov, r ; Tutty, Owen R ; Rogers, Eric</creatorcontrib><description>An approach to feedback control of linearized planar Poiseuille flow using H sub( infinity ) control is developed. Surface transpiration is used to control the flow, and point measurements of the wall shear stress are assumed to monitor its state. A high- but finite-dimensional model is obtained via a Galerkin procedure, and this model is approximated by a low-dimensional one using Hankel-optimal model reduction. For the purpose of control design, the flow is modeled as an interconnection of this low-dimensional system and a perturbation, reflecting the uncertainty in the model. The goal of control design is to achieve robust stability, that is, to stabilize any combination of the nominal plant and a feasible perturbation, and to satisfy certain performance requirements. Two different types of surface actuation are considered, harmonic transpiration and a model of a pair of suction/blowing panels. It is found that the latter is more efficient in suppressing disturbances in terms of the control effort required.</description><identifier>ISSN: 0731-5090</identifier><identifier>EISSN: 1533-3884</identifier><identifier>DOI: 10.2514/2.4859</identifier><identifier>CODEN: JGCODS</identifier><language>eng</language><publisher>Reston, VA: American Institute of Aeronautics and Astronautics</publisher><subject>Applied sciences ; Approximation ; Computer science ; Computer science; control theory; systems ; Control system analysis ; Control theory ; Control theory. Systems ; Controllers ; Design ; Exact sciences and technology ; Expected values ; Feedback control ; Flow control ; Galerkin methods ; Laminar flow ; Linearization ; Mathematical models ; Miscellaneous ; Perturbation techniques ; Reynolds number ; Robust control ; Shear stress ; System stability</subject><ispartof>Journal of guidance, control, and dynamics, 2002-01, Vol.25 (1), p.145-151</ispartof><rights>Copyright American Institute of Aeronautics and Astronautics Jan/Feb 2002</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a434t-b71bd5dcf280b74cb03db2574d64e931394924e51e81e2cfd96a20a73348d9503</citedby><cites>FETCH-LOGICAL-a434t-b71bd5dcf280b74cb03db2574d64e931394924e51e81e2cfd96a20a73348d9503</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14244935$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Lubom-egrave</creatorcontrib><creatorcontrib>Baramov, r</creatorcontrib><creatorcontrib>Tutty, Owen R</creatorcontrib><creatorcontrib>Rogers, Eric</creatorcontrib><title>Robust Control of Linearized Poiseuille Flow</title><title>Journal of guidance, control, and dynamics</title><description>An approach to feedback control of linearized planar Poiseuille flow using H sub( infinity ) control is developed. Surface transpiration is used to control the flow, and point measurements of the wall shear stress are assumed to monitor its state. A high- but finite-dimensional model is obtained via a Galerkin procedure, and this model is approximated by a low-dimensional one using Hankel-optimal model reduction. For the purpose of control design, the flow is modeled as an interconnection of this low-dimensional system and a perturbation, reflecting the uncertainty in the model. The goal of control design is to achieve robust stability, that is, to stabilize any combination of the nominal plant and a feasible perturbation, and to satisfy certain performance requirements. Two different types of surface actuation are considered, harmonic transpiration and a model of a pair of suction/blowing panels. It is found that the latter is more efficient in suppressing disturbances in terms of the control effort required.</description><subject>Applied sciences</subject><subject>Approximation</subject><subject>Computer science</subject><subject>Computer science; control theory; systems</subject><subject>Control system analysis</subject><subject>Control theory</subject><subject>Control theory. Systems</subject><subject>Controllers</subject><subject>Design</subject><subject>Exact sciences and technology</subject><subject>Expected values</subject><subject>Feedback control</subject><subject>Flow control</subject><subject>Galerkin methods</subject><subject>Laminar flow</subject><subject>Linearization</subject><subject>Mathematical models</subject><subject>Miscellaneous</subject><subject>Perturbation techniques</subject><subject>Reynolds number</subject><subject>Robust control</subject><subject>Shear stress</subject><subject>System stability</subject><issn>0731-5090</issn><issn>1533-3884</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNqN0UtLAzEQB_AgCtaqn2FBfBzcmudmc5RiVSgooueQ3SSQkm5qsouPT--WFhZUxNMc5sd_ZhgAjhGcYIboFZ7QkokdMEKMkJyUJd0FI8gJyhkUcB8cpLSAEJEC8RG4fApVl9psGpo2Bp8Fm81dY1R0n0Znj8El0znvTTbz4e0Q7Fnlkzna1jF4md08T-_y-cPt_fR6nitKaJtXHFWa6driElac1hUkusKMU11QIwgiggpMDUOmRAbXVotCYag4IbTUgkEyBueb3FUMr51JrVy6VBvvVWNClySnrMcc816e_SkxL7gQRfkviAjDPTz5Bhehi01_rsT96lwUhWBDXB1DStFYuYpuqeKHRFCuvyCxXH-hh6fbOJVq5W1UTe3SoCmmVBA2jFVOqWHkj7SL39SmK1faStt535r3lnwBLP-cGQ</recordid><startdate>200201</startdate><enddate>200201</enddate><creator>Lubom-egrave</creator><creator>Baramov, r</creator><creator>Tutty, Owen R</creator><creator>Rogers, Eric</creator><general>American Institute of Aeronautics and Astronautics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7TC</scope></search><sort><creationdate>200201</creationdate><title>Robust Control of Linearized Poiseuille Flow</title><author>Lubom-egrave ; Baramov, r ; Tutty, Owen R ; Rogers, Eric</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a434t-b71bd5dcf280b74cb03db2574d64e931394924e51e81e2cfd96a20a73348d9503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Applied sciences</topic><topic>Approximation</topic><topic>Computer science</topic><topic>Computer science; control theory; systems</topic><topic>Control system analysis</topic><topic>Control theory</topic><topic>Control theory. Systems</topic><topic>Controllers</topic><topic>Design</topic><topic>Exact sciences and technology</topic><topic>Expected values</topic><topic>Feedback control</topic><topic>Flow control</topic><topic>Galerkin methods</topic><topic>Laminar flow</topic><topic>Linearization</topic><topic>Mathematical models</topic><topic>Miscellaneous</topic><topic>Perturbation techniques</topic><topic>Reynolds number</topic><topic>Robust control</topic><topic>Shear stress</topic><topic>System stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lubom-egrave</creatorcontrib><creatorcontrib>Baramov, r</creatorcontrib><creatorcontrib>Tutty, Owen R</creatorcontrib><creatorcontrib>Rogers, Eric</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Mechanical Engineering Abstracts</collection><jtitle>Journal of guidance, control, and dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lubom-egrave</au><au>Baramov, r</au><au>Tutty, Owen R</au><au>Rogers, Eric</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust Control of Linearized Poiseuille Flow</atitle><jtitle>Journal of guidance, control, and dynamics</jtitle><date>2002-01</date><risdate>2002</risdate><volume>25</volume><issue>1</issue><spage>145</spage><epage>151</epage><pages>145-151</pages><issn>0731-5090</issn><eissn>1533-3884</eissn><coden>JGCODS</coden><abstract>An approach to feedback control of linearized planar Poiseuille flow using H sub( infinity ) control is developed. Surface transpiration is used to control the flow, and point measurements of the wall shear stress are assumed to monitor its state. A high- but finite-dimensional model is obtained via a Galerkin procedure, and this model is approximated by a low-dimensional one using Hankel-optimal model reduction. For the purpose of control design, the flow is modeled as an interconnection of this low-dimensional system and a perturbation, reflecting the uncertainty in the model. The goal of control design is to achieve robust stability, that is, to stabilize any combination of the nominal plant and a feasible perturbation, and to satisfy certain performance requirements. Two different types of surface actuation are considered, harmonic transpiration and a model of a pair of suction/blowing panels. It is found that the latter is more efficient in suppressing disturbances in terms of the control effort required.</abstract><cop>Reston, VA</cop><pub>American Institute of Aeronautics and Astronautics</pub><doi>10.2514/2.4859</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0731-5090 |
ispartof | Journal of guidance, control, and dynamics, 2002-01, Vol.25 (1), p.145-151 |
issn | 0731-5090 1533-3884 |
language | eng |
recordid | cdi_aiaa_journals_10_2514_2_4859 |
source | Alma/SFX Local Collection |
subjects | Applied sciences Approximation Computer science Computer science control theory systems Control system analysis Control theory Control theory. Systems Controllers Design Exact sciences and technology Expected values Feedback control Flow control Galerkin methods Laminar flow Linearization Mathematical models Miscellaneous Perturbation techniques Reynolds number Robust control Shear stress System stability |
title | Robust Control of Linearized Poiseuille Flow |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T23%3A39%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_aiaa_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20Control%20of%20Linearized%20Poiseuille%20Flow&rft.jtitle=Journal%20of%20guidance,%20control,%20and%20dynamics&rft.au=Lubom-egrave&rft.date=2002-01&rft.volume=25&rft.issue=1&rft.spage=145&rft.epage=151&rft.pages=145-151&rft.issn=0731-5090&rft.eissn=1533-3884&rft.coden=JGCODS&rft_id=info:doi/10.2514/2.4859&rft_dat=%3Cproquest_aiaa_%3E745733727%3C/proquest_aiaa_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2313796695&rft_id=info:pmid/&rfr_iscdi=true |