Robust Control of Linearized Poiseuille Flow

An approach to feedback control of linearized planar Poiseuille flow using H sub( infinity ) control is developed. Surface transpiration is used to control the flow, and point measurements of the wall shear stress are assumed to monitor its state. A high- but finite-dimensional model is obtained via...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of guidance, control, and dynamics control, and dynamics, 2002-01, Vol.25 (1), p.145-151
Hauptverfasser: Lubom-egrave, Baramov, r, Tutty, Owen R, Rogers, Eric
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 151
container_issue 1
container_start_page 145
container_title Journal of guidance, control, and dynamics
container_volume 25
creator Lubom-egrave
Baramov, r
Tutty, Owen R
Rogers, Eric
description An approach to feedback control of linearized planar Poiseuille flow using H sub( infinity ) control is developed. Surface transpiration is used to control the flow, and point measurements of the wall shear stress are assumed to monitor its state. A high- but finite-dimensional model is obtained via a Galerkin procedure, and this model is approximated by a low-dimensional one using Hankel-optimal model reduction. For the purpose of control design, the flow is modeled as an interconnection of this low-dimensional system and a perturbation, reflecting the uncertainty in the model. The goal of control design is to achieve robust stability, that is, to stabilize any combination of the nominal plant and a feasible perturbation, and to satisfy certain performance requirements. Two different types of surface actuation are considered, harmonic transpiration and a model of a pair of suction/blowing panels. It is found that the latter is more efficient in suppressing disturbances in terms of the control effort required.
doi_str_mv 10.2514/2.4859
format Article
fullrecord <record><control><sourceid>proquest_aiaa_</sourceid><recordid>TN_cdi_aiaa_journals_10_2514_2_4859</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>745733727</sourcerecordid><originalsourceid>FETCH-LOGICAL-a434t-b71bd5dcf280b74cb03db2574d64e931394924e51e81e2cfd96a20a73348d9503</originalsourceid><addsrcrecordid>eNqN0UtLAzEQB_AgCtaqn2FBfBzcmudmc5RiVSgooueQ3SSQkm5qsouPT--WFhZUxNMc5sd_ZhgAjhGcYIboFZ7QkokdMEKMkJyUJd0FI8gJyhkUcB8cpLSAEJEC8RG4fApVl9psGpo2Bp8Fm81dY1R0n0Znj8El0znvTTbz4e0Q7Fnlkzna1jF4md08T-_y-cPt_fR6nitKaJtXHFWa6driElac1hUkusKMU11QIwgiggpMDUOmRAbXVotCYag4IbTUgkEyBueb3FUMr51JrVy6VBvvVWNClySnrMcc816e_SkxL7gQRfkviAjDPTz5Bhehi01_rsT96lwUhWBDXB1DStFYuYpuqeKHRFCuvyCxXH-hh6fbOJVq5W1UTe3SoCmmVBA2jFVOqWHkj7SL39SmK1faStt535r3lnwBLP-cGQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2313796695</pqid></control><display><type>article</type><title>Robust Control of Linearized Poiseuille Flow</title><source>Alma/SFX Local Collection</source><creator>Lubom-egrave ; Baramov, r ; Tutty, Owen R ; Rogers, Eric</creator><creatorcontrib>Lubom-egrave ; Baramov, r ; Tutty, Owen R ; Rogers, Eric</creatorcontrib><description>An approach to feedback control of linearized planar Poiseuille flow using H sub( infinity ) control is developed. Surface transpiration is used to control the flow, and point measurements of the wall shear stress are assumed to monitor its state. A high- but finite-dimensional model is obtained via a Galerkin procedure, and this model is approximated by a low-dimensional one using Hankel-optimal model reduction. For the purpose of control design, the flow is modeled as an interconnection of this low-dimensional system and a perturbation, reflecting the uncertainty in the model. The goal of control design is to achieve robust stability, that is, to stabilize any combination of the nominal plant and a feasible perturbation, and to satisfy certain performance requirements. Two different types of surface actuation are considered, harmonic transpiration and a model of a pair of suction/blowing panels. It is found that the latter is more efficient in suppressing disturbances in terms of the control effort required.</description><identifier>ISSN: 0731-5090</identifier><identifier>EISSN: 1533-3884</identifier><identifier>DOI: 10.2514/2.4859</identifier><identifier>CODEN: JGCODS</identifier><language>eng</language><publisher>Reston, VA: American Institute of Aeronautics and Astronautics</publisher><subject>Applied sciences ; Approximation ; Computer science ; Computer science; control theory; systems ; Control system analysis ; Control theory ; Control theory. Systems ; Controllers ; Design ; Exact sciences and technology ; Expected values ; Feedback control ; Flow control ; Galerkin methods ; Laminar flow ; Linearization ; Mathematical models ; Miscellaneous ; Perturbation techniques ; Reynolds number ; Robust control ; Shear stress ; System stability</subject><ispartof>Journal of guidance, control, and dynamics, 2002-01, Vol.25 (1), p.145-151</ispartof><rights>Copyright American Institute of Aeronautics and Astronautics Jan/Feb 2002</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a434t-b71bd5dcf280b74cb03db2574d64e931394924e51e81e2cfd96a20a73348d9503</citedby><cites>FETCH-LOGICAL-a434t-b71bd5dcf280b74cb03db2574d64e931394924e51e81e2cfd96a20a73348d9503</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=14244935$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Lubom-egrave</creatorcontrib><creatorcontrib>Baramov, r</creatorcontrib><creatorcontrib>Tutty, Owen R</creatorcontrib><creatorcontrib>Rogers, Eric</creatorcontrib><title>Robust Control of Linearized Poiseuille Flow</title><title>Journal of guidance, control, and dynamics</title><description>An approach to feedback control of linearized planar Poiseuille flow using H sub( infinity ) control is developed. Surface transpiration is used to control the flow, and point measurements of the wall shear stress are assumed to monitor its state. A high- but finite-dimensional model is obtained via a Galerkin procedure, and this model is approximated by a low-dimensional one using Hankel-optimal model reduction. For the purpose of control design, the flow is modeled as an interconnection of this low-dimensional system and a perturbation, reflecting the uncertainty in the model. The goal of control design is to achieve robust stability, that is, to stabilize any combination of the nominal plant and a feasible perturbation, and to satisfy certain performance requirements. Two different types of surface actuation are considered, harmonic transpiration and a model of a pair of suction/blowing panels. It is found that the latter is more efficient in suppressing disturbances in terms of the control effort required.</description><subject>Applied sciences</subject><subject>Approximation</subject><subject>Computer science</subject><subject>Computer science; control theory; systems</subject><subject>Control system analysis</subject><subject>Control theory</subject><subject>Control theory. Systems</subject><subject>Controllers</subject><subject>Design</subject><subject>Exact sciences and technology</subject><subject>Expected values</subject><subject>Feedback control</subject><subject>Flow control</subject><subject>Galerkin methods</subject><subject>Laminar flow</subject><subject>Linearization</subject><subject>Mathematical models</subject><subject>Miscellaneous</subject><subject>Perturbation techniques</subject><subject>Reynolds number</subject><subject>Robust control</subject><subject>Shear stress</subject><subject>System stability</subject><issn>0731-5090</issn><issn>1533-3884</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNqN0UtLAzEQB_AgCtaqn2FBfBzcmudmc5RiVSgooueQ3SSQkm5qsouPT--WFhZUxNMc5sd_ZhgAjhGcYIboFZ7QkokdMEKMkJyUJd0FI8gJyhkUcB8cpLSAEJEC8RG4fApVl9psGpo2Bp8Fm81dY1R0n0Znj8El0znvTTbz4e0Q7Fnlkzna1jF4md08T-_y-cPt_fR6nitKaJtXHFWa6driElac1hUkusKMU11QIwgiggpMDUOmRAbXVotCYag4IbTUgkEyBueb3FUMr51JrVy6VBvvVWNClySnrMcc816e_SkxL7gQRfkviAjDPTz5Bhehi01_rsT96lwUhWBDXB1DStFYuYpuqeKHRFCuvyCxXH-hh6fbOJVq5W1UTe3SoCmmVBA2jFVOqWHkj7SL39SmK1faStt535r3lnwBLP-cGQ</recordid><startdate>200201</startdate><enddate>200201</enddate><creator>Lubom-egrave</creator><creator>Baramov, r</creator><creator>Tutty, Owen R</creator><creator>Rogers, Eric</creator><general>American Institute of Aeronautics and Astronautics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7TC</scope></search><sort><creationdate>200201</creationdate><title>Robust Control of Linearized Poiseuille Flow</title><author>Lubom-egrave ; Baramov, r ; Tutty, Owen R ; Rogers, Eric</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a434t-b71bd5dcf280b74cb03db2574d64e931394924e51e81e2cfd96a20a73348d9503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Applied sciences</topic><topic>Approximation</topic><topic>Computer science</topic><topic>Computer science; control theory; systems</topic><topic>Control system analysis</topic><topic>Control theory</topic><topic>Control theory. Systems</topic><topic>Controllers</topic><topic>Design</topic><topic>Exact sciences and technology</topic><topic>Expected values</topic><topic>Feedback control</topic><topic>Flow control</topic><topic>Galerkin methods</topic><topic>Laminar flow</topic><topic>Linearization</topic><topic>Mathematical models</topic><topic>Miscellaneous</topic><topic>Perturbation techniques</topic><topic>Reynolds number</topic><topic>Robust control</topic><topic>Shear stress</topic><topic>System stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lubom-egrave</creatorcontrib><creatorcontrib>Baramov, r</creatorcontrib><creatorcontrib>Tutty, Owen R</creatorcontrib><creatorcontrib>Rogers, Eric</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Mechanical Engineering Abstracts</collection><jtitle>Journal of guidance, control, and dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lubom-egrave</au><au>Baramov, r</au><au>Tutty, Owen R</au><au>Rogers, Eric</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust Control of Linearized Poiseuille Flow</atitle><jtitle>Journal of guidance, control, and dynamics</jtitle><date>2002-01</date><risdate>2002</risdate><volume>25</volume><issue>1</issue><spage>145</spage><epage>151</epage><pages>145-151</pages><issn>0731-5090</issn><eissn>1533-3884</eissn><coden>JGCODS</coden><abstract>An approach to feedback control of linearized planar Poiseuille flow using H sub( infinity ) control is developed. Surface transpiration is used to control the flow, and point measurements of the wall shear stress are assumed to monitor its state. A high- but finite-dimensional model is obtained via a Galerkin procedure, and this model is approximated by a low-dimensional one using Hankel-optimal model reduction. For the purpose of control design, the flow is modeled as an interconnection of this low-dimensional system and a perturbation, reflecting the uncertainty in the model. The goal of control design is to achieve robust stability, that is, to stabilize any combination of the nominal plant and a feasible perturbation, and to satisfy certain performance requirements. Two different types of surface actuation are considered, harmonic transpiration and a model of a pair of suction/blowing panels. It is found that the latter is more efficient in suppressing disturbances in terms of the control effort required.</abstract><cop>Reston, VA</cop><pub>American Institute of Aeronautics and Astronautics</pub><doi>10.2514/2.4859</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0731-5090
ispartof Journal of guidance, control, and dynamics, 2002-01, Vol.25 (1), p.145-151
issn 0731-5090
1533-3884
language eng
recordid cdi_aiaa_journals_10_2514_2_4859
source Alma/SFX Local Collection
subjects Applied sciences
Approximation
Computer science
Computer science
control theory
systems
Control system analysis
Control theory
Control theory. Systems
Controllers
Design
Exact sciences and technology
Expected values
Feedback control
Flow control
Galerkin methods
Laminar flow
Linearization
Mathematical models
Miscellaneous
Perturbation techniques
Reynolds number
Robust control
Shear stress
System stability
title Robust Control of Linearized Poiseuille Flow
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T23%3A39%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_aiaa_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20Control%20of%20Linearized%20Poiseuille%20Flow&rft.jtitle=Journal%20of%20guidance,%20control,%20and%20dynamics&rft.au=Lubom-egrave&rft.date=2002-01&rft.volume=25&rft.issue=1&rft.spage=145&rft.epage=151&rft.pages=145-151&rft.issn=0731-5090&rft.eissn=1533-3884&rft.coden=JGCODS&rft_id=info:doi/10.2514/2.4859&rft_dat=%3Cproquest_aiaa_%3E745733727%3C/proquest_aiaa_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2313796695&rft_id=info:pmid/&rfr_iscdi=true