Seventh-Order Polynomial Constituting the Exact Buckling Mode of a Functionally Graded Column

In this paper, a functionally graded material column that is simply supported at one end and clamped at the other is considered. The buckling mode is postulated as a high-order polynomial. Six novel closed-form solutions are found by the semi-inverse technique. These solutions can be used as benchma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIAA journal 2021-11, Vol.59 (11), p.4318-4325
Hauptverfasser: Elishakoff, Isaac, Padilla, Jonathan, Mera, Youkendy, Reddy, J. N
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4325
container_issue 11
container_start_page 4318
container_title AIAA journal
container_volume 59
creator Elishakoff, Isaac
Padilla, Jonathan
Mera, Youkendy
Reddy, J. N
description In this paper, a functionally graded material column that is simply supported at one end and clamped at the other is considered. The buckling mode is postulated as a high-order polynomial. Six novel closed-form solutions are found by the semi-inverse technique. These solutions can be used as benchmark problems with which numerous approximate solution techniques can be tested. Technical novelty consists in searching solutions via semi-inverse method, namely, by postulating the mode shape and searching for the variable flexural rigidity that matches the mode shape. The method is not universal in the sense that it does not develop method of finding the buckling loads for any, arbitrarily, axially graded columns; rather it furnishes closed-form solutions for flexural rigidity grading for columns that might possess the seventh-order polynomial mode shape. Still, this finding appears to be remarkable because it delivers the closed-form solution for the buckling loads.
doi_str_mv 10.2514/1.J060382
format Article
fullrecord <record><control><sourceid>proquest_aiaa_</sourceid><recordid>TN_cdi_aiaa_journals_10_2514_1_J060382</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2586561013</sourcerecordid><originalsourceid>FETCH-LOGICAL-a288t-528ae643376e5572448b46c49055201c6f96d97a16404304638aea957b8492ed3</originalsourceid><addsrcrecordid>eNpl0E1LAzEQBuAgCtbqwX8QEAQPW_O92aOWtiqVCip4kZDuZu3WNKlJVuy_d0sLHjwNMzwzDC8A5xgNCMfsGg8ekEBUkgPQw5zSjEr-dgh6CCGcYcbJMTiJcdl1JJe4B96fzbdxaZHNQmUCfPJ24_yq0RYOvYupSW1q3AdMCwNHP7pM8LYtP-129OgrA30NNRy3rkyNd9raDZwEXZmq27btyp2Co1rbaM72tQ9ex6OX4V02nU3uhzfTTBMpU8aJ1EYwSnNhOM8JY3LORMkKxDlBuBR1Iaoi11gwxChignZeFzyfS1YQU9E-uNjdXQf_1ZqY1NK3oXsoKsKl4AIjTDt1tVNl8DEGU6t1aFY6bBRGapuewmqfXmcvd1Y3Wv9d-w9_AfQ2a1g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2586561013</pqid></control><display><type>article</type><title>Seventh-Order Polynomial Constituting the Exact Buckling Mode of a Functionally Graded Column</title><source>Alma/SFX Local Collection</source><creator>Elishakoff, Isaac ; Padilla, Jonathan ; Mera, Youkendy ; Reddy, J. N</creator><creatorcontrib>Elishakoff, Isaac ; Padilla, Jonathan ; Mera, Youkendy ; Reddy, J. N</creatorcontrib><description>In this paper, a functionally graded material column that is simply supported at one end and clamped at the other is considered. The buckling mode is postulated as a high-order polynomial. Six novel closed-form solutions are found by the semi-inverse technique. These solutions can be used as benchmark problems with which numerous approximate solution techniques can be tested. Technical novelty consists in searching solutions via semi-inverse method, namely, by postulating the mode shape and searching for the variable flexural rigidity that matches the mode shape. The method is not universal in the sense that it does not develop method of finding the buckling loads for any, arbitrarily, axially graded columns; rather it furnishes closed-form solutions for flexural rigidity grading for columns that might possess the seventh-order polynomial mode shape. Still, this finding appears to be remarkable because it delivers the closed-form solution for the buckling loads.</description><identifier>ISSN: 0001-1452</identifier><identifier>EISSN: 1533-385X</identifier><identifier>DOI: 10.2514/1.J060382</identifier><language>eng</language><publisher>Virginia: American Institute of Aeronautics and Astronautics</publisher><subject>Boundary conditions ; Buckling ; Closed form solutions ; Columns (structural) ; Designers ; Eigenvalues ; Engineers ; Exact solutions ; Functionally gradient materials ; Inverse method ; Load ; Mathematical analysis ; Mechanical engineering ; Polynomials ; Rigidity ; Searching</subject><ispartof>AIAA journal, 2021-11, Vol.59 (11), p.4318-4325</ispartof><rights>Copyright © 2021 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. All requests for copying and permission to reprint should be submitted to CCC at ; employ the eISSN to initiate your request. See also AIAA Rights and Permissions .</rights><rights>Copyright © 2021 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. All requests for copying and permission to reprint should be submitted to CCC at www.copyright.com; employ the eISSN 1533-385X to initiate your request. See also AIAA Rights and Permissions www.aiaa.org/randp.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a288t-528ae643376e5572448b46c49055201c6f96d97a16404304638aea957b8492ed3</citedby><cites>FETCH-LOGICAL-a288t-528ae643376e5572448b46c49055201c6f96d97a16404304638aea957b8492ed3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27926,27927</link.rule.ids></links><search><creatorcontrib>Elishakoff, Isaac</creatorcontrib><creatorcontrib>Padilla, Jonathan</creatorcontrib><creatorcontrib>Mera, Youkendy</creatorcontrib><creatorcontrib>Reddy, J. N</creatorcontrib><title>Seventh-Order Polynomial Constituting the Exact Buckling Mode of a Functionally Graded Column</title><title>AIAA journal</title><description>In this paper, a functionally graded material column that is simply supported at one end and clamped at the other is considered. The buckling mode is postulated as a high-order polynomial. Six novel closed-form solutions are found by the semi-inverse technique. These solutions can be used as benchmark problems with which numerous approximate solution techniques can be tested. Technical novelty consists in searching solutions via semi-inverse method, namely, by postulating the mode shape and searching for the variable flexural rigidity that matches the mode shape. The method is not universal in the sense that it does not develop method of finding the buckling loads for any, arbitrarily, axially graded columns; rather it furnishes closed-form solutions for flexural rigidity grading for columns that might possess the seventh-order polynomial mode shape. Still, this finding appears to be remarkable because it delivers the closed-form solution for the buckling loads.</description><subject>Boundary conditions</subject><subject>Buckling</subject><subject>Closed form solutions</subject><subject>Columns (structural)</subject><subject>Designers</subject><subject>Eigenvalues</subject><subject>Engineers</subject><subject>Exact solutions</subject><subject>Functionally gradient materials</subject><subject>Inverse method</subject><subject>Load</subject><subject>Mathematical analysis</subject><subject>Mechanical engineering</subject><subject>Polynomials</subject><subject>Rigidity</subject><subject>Searching</subject><issn>0001-1452</issn><issn>1533-385X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpl0E1LAzEQBuAgCtbqwX8QEAQPW_O92aOWtiqVCip4kZDuZu3WNKlJVuy_d0sLHjwNMzwzDC8A5xgNCMfsGg8ekEBUkgPQw5zSjEr-dgh6CCGcYcbJMTiJcdl1JJe4B96fzbdxaZHNQmUCfPJ24_yq0RYOvYupSW1q3AdMCwNHP7pM8LYtP-129OgrA30NNRy3rkyNd9raDZwEXZmq27btyp2Co1rbaM72tQ9ex6OX4V02nU3uhzfTTBMpU8aJ1EYwSnNhOM8JY3LORMkKxDlBuBR1Iaoi11gwxChignZeFzyfS1YQU9E-uNjdXQf_1ZqY1NK3oXsoKsKl4AIjTDt1tVNl8DEGU6t1aFY6bBRGapuewmqfXmcvd1Y3Wv9d-w9_AfQ2a1g</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Elishakoff, Isaac</creator><creator>Padilla, Jonathan</creator><creator>Mera, Youkendy</creator><creator>Reddy, J. N</creator><general>American Institute of Aeronautics and Astronautics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20211101</creationdate><title>Seventh-Order Polynomial Constituting the Exact Buckling Mode of a Functionally Graded Column</title><author>Elishakoff, Isaac ; Padilla, Jonathan ; Mera, Youkendy ; Reddy, J. N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a288t-528ae643376e5572448b46c49055201c6f96d97a16404304638aea957b8492ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Boundary conditions</topic><topic>Buckling</topic><topic>Closed form solutions</topic><topic>Columns (structural)</topic><topic>Designers</topic><topic>Eigenvalues</topic><topic>Engineers</topic><topic>Exact solutions</topic><topic>Functionally gradient materials</topic><topic>Inverse method</topic><topic>Load</topic><topic>Mathematical analysis</topic><topic>Mechanical engineering</topic><topic>Polynomials</topic><topic>Rigidity</topic><topic>Searching</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Elishakoff, Isaac</creatorcontrib><creatorcontrib>Padilla, Jonathan</creatorcontrib><creatorcontrib>Mera, Youkendy</creatorcontrib><creatorcontrib>Reddy, J. N</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>AIAA journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Elishakoff, Isaac</au><au>Padilla, Jonathan</au><au>Mera, Youkendy</au><au>Reddy, J. N</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Seventh-Order Polynomial Constituting the Exact Buckling Mode of a Functionally Graded Column</atitle><jtitle>AIAA journal</jtitle><date>2021-11-01</date><risdate>2021</risdate><volume>59</volume><issue>11</issue><spage>4318</spage><epage>4325</epage><pages>4318-4325</pages><issn>0001-1452</issn><eissn>1533-385X</eissn><abstract>In this paper, a functionally graded material column that is simply supported at one end and clamped at the other is considered. The buckling mode is postulated as a high-order polynomial. Six novel closed-form solutions are found by the semi-inverse technique. These solutions can be used as benchmark problems with which numerous approximate solution techniques can be tested. Technical novelty consists in searching solutions via semi-inverse method, namely, by postulating the mode shape and searching for the variable flexural rigidity that matches the mode shape. The method is not universal in the sense that it does not develop method of finding the buckling loads for any, arbitrarily, axially graded columns; rather it furnishes closed-form solutions for flexural rigidity grading for columns that might possess the seventh-order polynomial mode shape. Still, this finding appears to be remarkable because it delivers the closed-form solution for the buckling loads.</abstract><cop>Virginia</cop><pub>American Institute of Aeronautics and Astronautics</pub><doi>10.2514/1.J060382</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0001-1452
ispartof AIAA journal, 2021-11, Vol.59 (11), p.4318-4325
issn 0001-1452
1533-385X
language eng
recordid cdi_aiaa_journals_10_2514_1_J060382
source Alma/SFX Local Collection
subjects Boundary conditions
Buckling
Closed form solutions
Columns (structural)
Designers
Eigenvalues
Engineers
Exact solutions
Functionally gradient materials
Inverse method
Load
Mathematical analysis
Mechanical engineering
Polynomials
Rigidity
Searching
title Seventh-Order Polynomial Constituting the Exact Buckling Mode of a Functionally Graded Column
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T03%3A47%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_aiaa_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Seventh-Order%20Polynomial%20Constituting%20the%20Exact%20Buckling%20Mode%20of%20a%20Functionally%20Graded%20Column&rft.jtitle=AIAA%20journal&rft.au=Elishakoff,%20Isaac&rft.date=2021-11-01&rft.volume=59&rft.issue=11&rft.spage=4318&rft.epage=4325&rft.pages=4318-4325&rft.issn=0001-1452&rft.eissn=1533-385X&rft_id=info:doi/10.2514/1.J060382&rft_dat=%3Cproquest_aiaa_%3E2586561013%3C/proquest_aiaa_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2586561013&rft_id=info:pmid/&rfr_iscdi=true