Data-Driven Aerospace Engineering: Reframing the Industry with Machine Learning
Data science, and machine learning in particular, is rapidly transforming the scientific and industrial landscapes. The aerospace industry is poised to capitalize on big data and machine learning, which excels at solving the types of multi-objective, constrained optimization problems that arise in a...
Gespeichert in:
Veröffentlicht in: | AIAA journal 2021-08, Vol.59 (8), p.2820-2847 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2847 |
---|---|
container_issue | 8 |
container_start_page | 2820 |
container_title | AIAA journal |
container_volume | 59 |
creator | Brunton, Steven L Nathan Kutz, J Manohar, Krithika Aravkin, Aleksandr Y Morgansen, Kristi Klemisch, Jennifer Goebel, Nicholas Buttrick, James Poskin, Jeffrey Blom-Schieber, Adriana W Hogan, Thomas McDonald, Darren |
description | Data science, and machine learning in particular, is rapidly transforming the scientific and industrial landscapes. The aerospace industry is poised to capitalize on big data and machine learning, which excels at solving the types of multi-objective, constrained optimization problems that arise in aircraft design and manufacturing. Indeed, emerging methods in machine learning may be thought of as data-driven optimization techniques that are ideal for high-dimensional, nonconvex, and constrained, multi-objective optimization problems, and that improve with increasing volumes of data. This review will explore the opportunities and challenges of integrating data-driven science and engineering into the aerospace industry. Importantly, this paper will focus on the critical need for interpretable, generalizable, explainable, and certifiable machine learning techniques for safety-critical applications. This review will include a retrospective, an assessment of the current state-of-the-art, and a roadmap looking forward. Recent algorithmic and technological trends will be explored in the context of critical challenges in aerospace design, manufacturing, verification, validation, and services. In addition, this review will explore this landscape through several case studies in the aerospace industry. This document is the result of close collaboration between University of Washington and Boeing to summarize past efforts and outline future opportunities. |
doi_str_mv | 10.2514/1.J060131 |
format | Article |
fullrecord | <record><control><sourceid>proquest_aiaa_</sourceid><recordid>TN_cdi_aiaa_journals_10_2514_1_J060131</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2557873769</sourcerecordid><originalsourceid>FETCH-LOGICAL-a288t-d488161d774244dedc370c85f0625fb9023deee01473ff1dd6284accecd1f1fb3</originalsourceid><addsrcrecordid>eNpl0E1LAzEQBuAgCtbqwX8QEAQPWzP52KTeSlu1UimIgrclTSbtFrut2V2l_95ICx48zQw8zDAvIZfAelyBvIXeE8sZCDgiHVBCZMKo92PSYYxBBlLxU3JW16s0cW2gQ2Yj29hsFMsvrOgA46beWod0XC3KCjGW1eKOvmCIdp1a2iyRTirf1k3c0e-yWdJn65ZJ0inaWCVyTk6C_ajx4lC75O1-_Dp8zKazh8lwMM0sN6bJvDQGcvBaSy6lR--EZs6owHKuwrzPuPCIyEBqEQJ4n3MjrXPoPAQIc9ElV_u927j5bLFuitWmjVU6WXCltNFC5_2kbvbKpcfqiKHYxnJt464AVvzmVUBxyCvZ6721pbV_2_7DHwoKaDI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2557873769</pqid></control><display><type>article</type><title>Data-Driven Aerospace Engineering: Reframing the Industry with Machine Learning</title><source>Alma/SFX Local Collection</source><creator>Brunton, Steven L ; Nathan Kutz, J ; Manohar, Krithika ; Aravkin, Aleksandr Y ; Morgansen, Kristi ; Klemisch, Jennifer ; Goebel, Nicholas ; Buttrick, James ; Poskin, Jeffrey ; Blom-Schieber, Adriana W ; Hogan, Thomas ; McDonald, Darren</creator><creatorcontrib>Brunton, Steven L ; Nathan Kutz, J ; Manohar, Krithika ; Aravkin, Aleksandr Y ; Morgansen, Kristi ; Klemisch, Jennifer ; Goebel, Nicholas ; Buttrick, James ; Poskin, Jeffrey ; Blom-Schieber, Adriana W ; Hogan, Thomas ; McDonald, Darren</creatorcontrib><description>Data science, and machine learning in particular, is rapidly transforming the scientific and industrial landscapes. The aerospace industry is poised to capitalize on big data and machine learning, which excels at solving the types of multi-objective, constrained optimization problems that arise in aircraft design and manufacturing. Indeed, emerging methods in machine learning may be thought of as data-driven optimization techniques that are ideal for high-dimensional, nonconvex, and constrained, multi-objective optimization problems, and that improve with increasing volumes of data. This review will explore the opportunities and challenges of integrating data-driven science and engineering into the aerospace industry. Importantly, this paper will focus on the critical need for interpretable, generalizable, explainable, and certifiable machine learning techniques for safety-critical applications. This review will include a retrospective, an assessment of the current state-of-the-art, and a roadmap looking forward. Recent algorithmic and technological trends will be explored in the context of critical challenges in aerospace design, manufacturing, verification, validation, and services. In addition, this review will explore this landscape through several case studies in the aerospace industry. This document is the result of close collaboration between University of Washington and Boeing to summarize past efforts and outline future opportunities.</description><identifier>ISSN: 0001-1452</identifier><identifier>EISSN: 1533-385X</identifier><identifier>DOI: 10.2514/1.J060131</identifier><language>eng</language><publisher>Virginia: American Institute of Aeronautics and Astronautics</publisher><subject>Aerospace engineering ; Aerospace industry ; Aircraft design ; Aircraft industry ; Machine learning ; Multiple objective analysis ; Optimization ; Optimization techniques ; Safety critical</subject><ispartof>AIAA journal, 2021-08, Vol.59 (8), p.2820-2847</ispartof><rights>Copyright © 2021 by the authors. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission. All requests for copying and permission to reprint should be submitted to CCC at ; employ the eISSN to initiate your request. See also AIAA Rights and Permissions .</rights><rights>Copyright © 2021 by the authors. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission. All requests for copying and permission to reprint should be submitted to CCC at www.copyright.com; employ the eISSN 1533-385X to initiate your request. See also AIAA Rights and Permissions www.aiaa.org/randp.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a288t-d488161d774244dedc370c85f0625fb9023deee01473ff1dd6284accecd1f1fb3</citedby><cites>FETCH-LOGICAL-a288t-d488161d774244dedc370c85f0625fb9023deee01473ff1dd6284accecd1f1fb3</cites><orcidid>0000-0002-8747-182X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Brunton, Steven L</creatorcontrib><creatorcontrib>Nathan Kutz, J</creatorcontrib><creatorcontrib>Manohar, Krithika</creatorcontrib><creatorcontrib>Aravkin, Aleksandr Y</creatorcontrib><creatorcontrib>Morgansen, Kristi</creatorcontrib><creatorcontrib>Klemisch, Jennifer</creatorcontrib><creatorcontrib>Goebel, Nicholas</creatorcontrib><creatorcontrib>Buttrick, James</creatorcontrib><creatorcontrib>Poskin, Jeffrey</creatorcontrib><creatorcontrib>Blom-Schieber, Adriana W</creatorcontrib><creatorcontrib>Hogan, Thomas</creatorcontrib><creatorcontrib>McDonald, Darren</creatorcontrib><title>Data-Driven Aerospace Engineering: Reframing the Industry with Machine Learning</title><title>AIAA journal</title><description>Data science, and machine learning in particular, is rapidly transforming the scientific and industrial landscapes. The aerospace industry is poised to capitalize on big data and machine learning, which excels at solving the types of multi-objective, constrained optimization problems that arise in aircraft design and manufacturing. Indeed, emerging methods in machine learning may be thought of as data-driven optimization techniques that are ideal for high-dimensional, nonconvex, and constrained, multi-objective optimization problems, and that improve with increasing volumes of data. This review will explore the opportunities and challenges of integrating data-driven science and engineering into the aerospace industry. Importantly, this paper will focus on the critical need for interpretable, generalizable, explainable, and certifiable machine learning techniques for safety-critical applications. This review will include a retrospective, an assessment of the current state-of-the-art, and a roadmap looking forward. Recent algorithmic and technological trends will be explored in the context of critical challenges in aerospace design, manufacturing, verification, validation, and services. In addition, this review will explore this landscape through several case studies in the aerospace industry. This document is the result of close collaboration between University of Washington and Boeing to summarize past efforts and outline future opportunities.</description><subject>Aerospace engineering</subject><subject>Aerospace industry</subject><subject>Aircraft design</subject><subject>Aircraft industry</subject><subject>Machine learning</subject><subject>Multiple objective analysis</subject><subject>Optimization</subject><subject>Optimization techniques</subject><subject>Safety critical</subject><issn>0001-1452</issn><issn>1533-385X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpl0E1LAzEQBuAgCtbqwX8QEAQPWzP52KTeSlu1UimIgrclTSbtFrut2V2l_95ICx48zQw8zDAvIZfAelyBvIXeE8sZCDgiHVBCZMKo92PSYYxBBlLxU3JW16s0cW2gQ2Yj29hsFMsvrOgA46beWod0XC3KCjGW1eKOvmCIdp1a2iyRTirf1k3c0e-yWdJn65ZJ0inaWCVyTk6C_ajx4lC75O1-_Dp8zKazh8lwMM0sN6bJvDQGcvBaSy6lR--EZs6owHKuwrzPuPCIyEBqEQJ4n3MjrXPoPAQIc9ElV_u927j5bLFuitWmjVU6WXCltNFC5_2kbvbKpcfqiKHYxnJt464AVvzmVUBxyCvZ6721pbV_2_7DHwoKaDI</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Brunton, Steven L</creator><creator>Nathan Kutz, J</creator><creator>Manohar, Krithika</creator><creator>Aravkin, Aleksandr Y</creator><creator>Morgansen, Kristi</creator><creator>Klemisch, Jennifer</creator><creator>Goebel, Nicholas</creator><creator>Buttrick, James</creator><creator>Poskin, Jeffrey</creator><creator>Blom-Schieber, Adriana W</creator><creator>Hogan, Thomas</creator><creator>McDonald, Darren</creator><general>American Institute of Aeronautics and Astronautics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8747-182X</orcidid></search><sort><creationdate>20210801</creationdate><title>Data-Driven Aerospace Engineering: Reframing the Industry with Machine Learning</title><author>Brunton, Steven L ; Nathan Kutz, J ; Manohar, Krithika ; Aravkin, Aleksandr Y ; Morgansen, Kristi ; Klemisch, Jennifer ; Goebel, Nicholas ; Buttrick, James ; Poskin, Jeffrey ; Blom-Schieber, Adriana W ; Hogan, Thomas ; McDonald, Darren</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a288t-d488161d774244dedc370c85f0625fb9023deee01473ff1dd6284accecd1f1fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aerospace engineering</topic><topic>Aerospace industry</topic><topic>Aircraft design</topic><topic>Aircraft industry</topic><topic>Machine learning</topic><topic>Multiple objective analysis</topic><topic>Optimization</topic><topic>Optimization techniques</topic><topic>Safety critical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brunton, Steven L</creatorcontrib><creatorcontrib>Nathan Kutz, J</creatorcontrib><creatorcontrib>Manohar, Krithika</creatorcontrib><creatorcontrib>Aravkin, Aleksandr Y</creatorcontrib><creatorcontrib>Morgansen, Kristi</creatorcontrib><creatorcontrib>Klemisch, Jennifer</creatorcontrib><creatorcontrib>Goebel, Nicholas</creatorcontrib><creatorcontrib>Buttrick, James</creatorcontrib><creatorcontrib>Poskin, Jeffrey</creatorcontrib><creatorcontrib>Blom-Schieber, Adriana W</creatorcontrib><creatorcontrib>Hogan, Thomas</creatorcontrib><creatorcontrib>McDonald, Darren</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>AIAA journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brunton, Steven L</au><au>Nathan Kutz, J</au><au>Manohar, Krithika</au><au>Aravkin, Aleksandr Y</au><au>Morgansen, Kristi</au><au>Klemisch, Jennifer</au><au>Goebel, Nicholas</au><au>Buttrick, James</au><au>Poskin, Jeffrey</au><au>Blom-Schieber, Adriana W</au><au>Hogan, Thomas</au><au>McDonald, Darren</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Data-Driven Aerospace Engineering: Reframing the Industry with Machine Learning</atitle><jtitle>AIAA journal</jtitle><date>2021-08-01</date><risdate>2021</risdate><volume>59</volume><issue>8</issue><spage>2820</spage><epage>2847</epage><pages>2820-2847</pages><issn>0001-1452</issn><eissn>1533-385X</eissn><abstract>Data science, and machine learning in particular, is rapidly transforming the scientific and industrial landscapes. The aerospace industry is poised to capitalize on big data and machine learning, which excels at solving the types of multi-objective, constrained optimization problems that arise in aircraft design and manufacturing. Indeed, emerging methods in machine learning may be thought of as data-driven optimization techniques that are ideal for high-dimensional, nonconvex, and constrained, multi-objective optimization problems, and that improve with increasing volumes of data. This review will explore the opportunities and challenges of integrating data-driven science and engineering into the aerospace industry. Importantly, this paper will focus on the critical need for interpretable, generalizable, explainable, and certifiable machine learning techniques for safety-critical applications. This review will include a retrospective, an assessment of the current state-of-the-art, and a roadmap looking forward. Recent algorithmic and technological trends will be explored in the context of critical challenges in aerospace design, manufacturing, verification, validation, and services. In addition, this review will explore this landscape through several case studies in the aerospace industry. This document is the result of close collaboration between University of Washington and Boeing to summarize past efforts and outline future opportunities.</abstract><cop>Virginia</cop><pub>American Institute of Aeronautics and Astronautics</pub><doi>10.2514/1.J060131</doi><tpages>28</tpages><orcidid>https://orcid.org/0000-0002-8747-182X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-1452 |
ispartof | AIAA journal, 2021-08, Vol.59 (8), p.2820-2847 |
issn | 0001-1452 1533-385X |
language | eng |
recordid | cdi_aiaa_journals_10_2514_1_J060131 |
source | Alma/SFX Local Collection |
subjects | Aerospace engineering Aerospace industry Aircraft design Aircraft industry Machine learning Multiple objective analysis Optimization Optimization techniques Safety critical |
title | Data-Driven Aerospace Engineering: Reframing the Industry with Machine Learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T15%3A52%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_aiaa_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Data-Driven%20Aerospace%20Engineering:%20Reframing%20the%20Industry%20with%20Machine%20Learning&rft.jtitle=AIAA%20journal&rft.au=Brunton,%20Steven%20L&rft.date=2021-08-01&rft.volume=59&rft.issue=8&rft.spage=2820&rft.epage=2847&rft.pages=2820-2847&rft.issn=0001-1452&rft.eissn=1533-385X&rft_id=info:doi/10.2514/1.J060131&rft_dat=%3Cproquest_aiaa_%3E2557873769%3C/proquest_aiaa_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2557873769&rft_id=info:pmid/&rfr_iscdi=true |