Electromechanical Resonant Ice Protection Systems: Energetic and Power Considerations

This paper focuses on resonant ice protection systems and proposes key performance indicators to analyze the performances of such systems with respect to levels of energy, force, and power required for de-icing. The principle of these systems is to apply vibrations or ultrasonic waves onto the struc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIAA journal 2021-07, Vol.59 (7), p.2590-2602
Hauptverfasser: Budinger, Marc, Pommier-Budinger, Valérie, Reysset, Aurélien, Palanque, Valerian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2602
container_issue 7
container_start_page 2590
container_title AIAA journal
container_volume 59
creator Budinger, Marc
Pommier-Budinger, Valérie
Reysset, Aurélien
Palanque, Valerian
description This paper focuses on resonant ice protection systems and proposes key performance indicators to analyze the performances of such systems with respect to levels of energy, force, and power required for de-icing. The principle of these systems is to apply vibrations or ultrasonic waves onto the structure that create high-level stresses greater than those required to crack and delaminate to remove the ice accumulated on the structure. The computation of the indicators requires two values: the ice adhesion strength and the critical strain energy release rate. Computations are performed assuming three stages of a de-icing mechanism: first, an initiation of cohesive fractures by tensile stress at the top surface of the ice layer; second, a propagation of cohesive fractures within the ice; and, third, a propagation of adhesive fractures at the ice/substrate interface starting from the base of the cohesive fractures previously created. The proposed key performance indicators provide guidance on the use of flexural and extensional modes in resonant ice protection systems and on the frequency range to favor when looking at fractures initiation and propagation. Calculations based on the key performance indicators show a potential power reduction by 10 with resonant electromechanical de-icing systems compared to electrothermal systems.
doi_str_mv 10.2514/1.J060008
format Article
fullrecord <record><control><sourceid>proquest_aiaa_</sourceid><recordid>TN_cdi_aiaa_journals_10_2514_1_J060008</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2545644050</sourcerecordid><originalsourceid>FETCH-LOGICAL-a323t-11002f31471ac5ed19c56f3d66a694fd653fac59c320295fb83552919ee619443</originalsourceid><addsrcrecordid>eNpl0E1LAzEQBuAgCtbqwX8QEAQPWzP56q43KVUrBYta8BZidqJb2kSTLdJ_75YWPHgaZuZhBl5CzoENuAJ5DYNHphlj5QHpgRKiEKV6OyS9bgQFSMWPyUnOi67jwxJ6ZD5eomtTXKH7tKFxdkmfMcdgQ0snDuksxbYDTQz0ZZNbXOUbOg6YPrBtHLWhprP4g4mOYshNjcluaT4lR94uM57ta5_M78avo4di-nQ_Gd1OCyu4aAsAxrgXIIdgncIaKqe0F7XWVlfS11oJ3y0qJzjjlfLvpVCKV1AhaqikFH1ysbv7leL3GnNrFnGdQvfScCWVlpIp1qmrnXIp5pzQm6_UrGzaGGBmm5oBs0-ts5c7axtr_679h78HsWmn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2545644050</pqid></control><display><type>article</type><title>Electromechanical Resonant Ice Protection Systems: Energetic and Power Considerations</title><source>Alma/SFX Local Collection</source><creator>Budinger, Marc ; Pommier-Budinger, Valérie ; Reysset, Aurélien ; Palanque, Valerian</creator><creatorcontrib>Budinger, Marc ; Pommier-Budinger, Valérie ; Reysset, Aurélien ; Palanque, Valerian</creatorcontrib><description>This paper focuses on resonant ice protection systems and proposes key performance indicators to analyze the performances of such systems with respect to levels of energy, force, and power required for de-icing. The principle of these systems is to apply vibrations or ultrasonic waves onto the structure that create high-level stresses greater than those required to crack and delaminate to remove the ice accumulated on the structure. The computation of the indicators requires two values: the ice adhesion strength and the critical strain energy release rate. Computations are performed assuming three stages of a de-icing mechanism: first, an initiation of cohesive fractures by tensile stress at the top surface of the ice layer; second, a propagation of cohesive fractures within the ice; and, third, a propagation of adhesive fractures at the ice/substrate interface starting from the base of the cohesive fractures previously created. The proposed key performance indicators provide guidance on the use of flexural and extensional modes in resonant ice protection systems and on the frequency range to favor when looking at fractures initiation and propagation. Calculations based on the key performance indicators show a potential power reduction by 10 with resonant electromechanical de-icing systems compared to electrothermal systems.</description><identifier>ISSN: 0001-1452</identifier><identifier>EISSN: 1533-385X</identifier><identifier>DOI: 10.2514/1.J060008</identifier><language>eng</language><publisher>Virginia: American Institute of Aeronautics and Astronautics</publisher><subject>Adhesive strength ; Business metrics ; Cohesion ; Crack initiation ; Crack propagation ; Fracture mechanics ; Fractures ; Frequency ranges ; Ice accumulation ; Ice removal ; Indicators ; Propagation ; Strain energy release rate ; Stress propagation ; Substrates ; Tensile stress</subject><ispartof>AIAA journal, 2021-07, Vol.59 (7), p.2590-2602</ispartof><rights>Copyright © 2021 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. All requests for copying and permission to reprint should be submitted to CCC at ; employ the eISSN to initiate your request. See also AIAA Rights and Permissions .</rights><rights>Copyright © 2021 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. All requests for copying and permission to reprint should be submitted to CCC at www.copyright.com; employ the eISSN 1533-385X to initiate your request. See also AIAA Rights and Permissions www.aiaa.org/randp.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a323t-11002f31471ac5ed19c56f3d66a694fd653fac59c320295fb83552919ee619443</citedby><cites>FETCH-LOGICAL-a323t-11002f31471ac5ed19c56f3d66a694fd653fac59c320295fb83552919ee619443</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Budinger, Marc</creatorcontrib><creatorcontrib>Pommier-Budinger, Valérie</creatorcontrib><creatorcontrib>Reysset, Aurélien</creatorcontrib><creatorcontrib>Palanque, Valerian</creatorcontrib><title>Electromechanical Resonant Ice Protection Systems: Energetic and Power Considerations</title><title>AIAA journal</title><description>This paper focuses on resonant ice protection systems and proposes key performance indicators to analyze the performances of such systems with respect to levels of energy, force, and power required for de-icing. The principle of these systems is to apply vibrations or ultrasonic waves onto the structure that create high-level stresses greater than those required to crack and delaminate to remove the ice accumulated on the structure. The computation of the indicators requires two values: the ice adhesion strength and the critical strain energy release rate. Computations are performed assuming three stages of a de-icing mechanism: first, an initiation of cohesive fractures by tensile stress at the top surface of the ice layer; second, a propagation of cohesive fractures within the ice; and, third, a propagation of adhesive fractures at the ice/substrate interface starting from the base of the cohesive fractures previously created. The proposed key performance indicators provide guidance on the use of flexural and extensional modes in resonant ice protection systems and on the frequency range to favor when looking at fractures initiation and propagation. Calculations based on the key performance indicators show a potential power reduction by 10 with resonant electromechanical de-icing systems compared to electrothermal systems.</description><subject>Adhesive strength</subject><subject>Business metrics</subject><subject>Cohesion</subject><subject>Crack initiation</subject><subject>Crack propagation</subject><subject>Fracture mechanics</subject><subject>Fractures</subject><subject>Frequency ranges</subject><subject>Ice accumulation</subject><subject>Ice removal</subject><subject>Indicators</subject><subject>Propagation</subject><subject>Strain energy release rate</subject><subject>Stress propagation</subject><subject>Substrates</subject><subject>Tensile stress</subject><issn>0001-1452</issn><issn>1533-385X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpl0E1LAzEQBuAgCtbqwX8QEAQPWzP56q43KVUrBYta8BZidqJb2kSTLdJ_75YWPHgaZuZhBl5CzoENuAJ5DYNHphlj5QHpgRKiEKV6OyS9bgQFSMWPyUnOi67jwxJ6ZD5eomtTXKH7tKFxdkmfMcdgQ0snDuksxbYDTQz0ZZNbXOUbOg6YPrBtHLWhprP4g4mOYshNjcluaT4lR94uM57ta5_M78avo4di-nQ_Gd1OCyu4aAsAxrgXIIdgncIaKqe0F7XWVlfS11oJ3y0qJzjjlfLvpVCKV1AhaqikFH1ysbv7leL3GnNrFnGdQvfScCWVlpIp1qmrnXIp5pzQm6_UrGzaGGBmm5oBs0-ts5c7axtr_679h78HsWmn</recordid><startdate>202107</startdate><enddate>202107</enddate><creator>Budinger, Marc</creator><creator>Pommier-Budinger, Valérie</creator><creator>Reysset, Aurélien</creator><creator>Palanque, Valerian</creator><general>American Institute of Aeronautics and Astronautics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>202107</creationdate><title>Electromechanical Resonant Ice Protection Systems: Energetic and Power Considerations</title><author>Budinger, Marc ; Pommier-Budinger, Valérie ; Reysset, Aurélien ; Palanque, Valerian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a323t-11002f31471ac5ed19c56f3d66a694fd653fac59c320295fb83552919ee619443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adhesive strength</topic><topic>Business metrics</topic><topic>Cohesion</topic><topic>Crack initiation</topic><topic>Crack propagation</topic><topic>Fracture mechanics</topic><topic>Fractures</topic><topic>Frequency ranges</topic><topic>Ice accumulation</topic><topic>Ice removal</topic><topic>Indicators</topic><topic>Propagation</topic><topic>Strain energy release rate</topic><topic>Stress propagation</topic><topic>Substrates</topic><topic>Tensile stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Budinger, Marc</creatorcontrib><creatorcontrib>Pommier-Budinger, Valérie</creatorcontrib><creatorcontrib>Reysset, Aurélien</creatorcontrib><creatorcontrib>Palanque, Valerian</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>AIAA journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Budinger, Marc</au><au>Pommier-Budinger, Valérie</au><au>Reysset, Aurélien</au><au>Palanque, Valerian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electromechanical Resonant Ice Protection Systems: Energetic and Power Considerations</atitle><jtitle>AIAA journal</jtitle><date>2021-07</date><risdate>2021</risdate><volume>59</volume><issue>7</issue><spage>2590</spage><epage>2602</epage><pages>2590-2602</pages><issn>0001-1452</issn><eissn>1533-385X</eissn><abstract>This paper focuses on resonant ice protection systems and proposes key performance indicators to analyze the performances of such systems with respect to levels of energy, force, and power required for de-icing. The principle of these systems is to apply vibrations or ultrasonic waves onto the structure that create high-level stresses greater than those required to crack and delaminate to remove the ice accumulated on the structure. The computation of the indicators requires two values: the ice adhesion strength and the critical strain energy release rate. Computations are performed assuming three stages of a de-icing mechanism: first, an initiation of cohesive fractures by tensile stress at the top surface of the ice layer; second, a propagation of cohesive fractures within the ice; and, third, a propagation of adhesive fractures at the ice/substrate interface starting from the base of the cohesive fractures previously created. The proposed key performance indicators provide guidance on the use of flexural and extensional modes in resonant ice protection systems and on the frequency range to favor when looking at fractures initiation and propagation. Calculations based on the key performance indicators show a potential power reduction by 10 with resonant electromechanical de-icing systems compared to electrothermal systems.</abstract><cop>Virginia</cop><pub>American Institute of Aeronautics and Astronautics</pub><doi>10.2514/1.J060008</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0001-1452
ispartof AIAA journal, 2021-07, Vol.59 (7), p.2590-2602
issn 0001-1452
1533-385X
language eng
recordid cdi_aiaa_journals_10_2514_1_J060008
source Alma/SFX Local Collection
subjects Adhesive strength
Business metrics
Cohesion
Crack initiation
Crack propagation
Fracture mechanics
Fractures
Frequency ranges
Ice accumulation
Ice removal
Indicators
Propagation
Strain energy release rate
Stress propagation
Substrates
Tensile stress
title Electromechanical Resonant Ice Protection Systems: Energetic and Power Considerations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T01%3A05%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_aiaa_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electromechanical%20Resonant%20Ice%20Protection%20Systems:%20Energetic%20and%20Power%20Considerations&rft.jtitle=AIAA%20journal&rft.au=Budinger,%20Marc&rft.date=2021-07&rft.volume=59&rft.issue=7&rft.spage=2590&rft.epage=2602&rft.pages=2590-2602&rft.issn=0001-1452&rft.eissn=1533-385X&rft_id=info:doi/10.2514/1.J060008&rft_dat=%3Cproquest_aiaa_%3E2545644050%3C/proquest_aiaa_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2545644050&rft_id=info:pmid/&rfr_iscdi=true