Shock-Capturing Anomaly in the Interaction of Unsteady Disturbances with a Stationary Shock
Shock-capturing methods for numerical fluid dynamics are capable of correctly representing the flow conditions across shocks. However, there is no guarantee that the methods remain equally applicable for unsteady problems of shock–disturbance interaction. Based on the results of wide parametric comp...
Gespeichert in:
Veröffentlicht in: | AIAA journal 2021-08, Vol.59 (8), p.3241-3251 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3251 |
---|---|
container_issue | 8 |
container_start_page | 3241 |
container_title | AIAA journal |
container_volume | 59 |
creator | Chuvakhov, Pavel V |
description | Shock-capturing methods for numerical fluid dynamics are capable of correctly representing the flow conditions across shocks. However, there is no guarantee that the methods remain equally applicable for unsteady problems of shock–disturbance interaction. Based on the results of wide parametric computations, this paper demonstrates an inherent weakness of shock-capturing methods related to an ambiguous station of a stationary shock on a grid cell. To this end, the interaction of stationary shocks of different intensities with elementary waves of acoustic and nonacoustic nature is investigated in a simplified formulation. The computations reveal unpredictable postshock amplitudes of disturbances unless the viscous structure of the shock is sufficiently resolved. A shock resolution criterion and possible cures are suggested and discussed. |
doi_str_mv | 10.2514/1.J059682 |
format | Article |
fullrecord | <record><control><sourceid>proquest_aiaa_</sourceid><recordid>TN_cdi_aiaa_journals_10_2514_1_J059682</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2557873599</sourcerecordid><originalsourceid>FETCH-LOGICAL-a288t-aba34c9950a0f509b0ebcdf51278575efd80e0ae36fab2aae4cb1dc5f99b272f3</originalsourceid><addsrcrecordid>eNplkE1LAzEQhoMoWKsH_0FAEDxsTbKb7uZY6lel4KEWBA9hkk1saputSYrsv3drCx48DQPPPPPyInRJyYBxWtzSwTPhYlixI9SjPM-zvOJvx6hHCKEZLTg7RWcxLruNlRXtoffZotGf2Rg2aRuc_8Aj36xh1WLncVoYPPHJBNDJNR43Fs99TAbqFt-52B0o8NpE_O3SAgOeJdhxEFr8az1HJxZW0VwcZh_NH-5fx0_Z9OVxMh5NM2BVlTJQkBdaCE6AWE6EIkbp2vJdQl5yY-uKGAImH1pQDMAUWtFacyuEYiWzeR9d7b2b0HxtTUxy2WyD715KxnlZlTkXoqNu9pQOTYzBWLkJbt2FlZTIXXeSykN3HXu9Z8EB_Nn-gz_9R23u</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2557873599</pqid></control><display><type>article</type><title>Shock-Capturing Anomaly in the Interaction of Unsteady Disturbances with a Stationary Shock</title><source>Alma/SFX Local Collection</source><creator>Chuvakhov, Pavel V</creator><creatorcontrib>Chuvakhov, Pavel V</creatorcontrib><description>Shock-capturing methods for numerical fluid dynamics are capable of correctly representing the flow conditions across shocks. However, there is no guarantee that the methods remain equally applicable for unsteady problems of shock–disturbance interaction. Based on the results of wide parametric computations, this paper demonstrates an inherent weakness of shock-capturing methods related to an ambiguous station of a stationary shock on a grid cell. To this end, the interaction of stationary shocks of different intensities with elementary waves of acoustic and nonacoustic nature is investigated in a simplified formulation. The computations reveal unpredictable postshock amplitudes of disturbances unless the viscous structure of the shock is sufficiently resolved. A shock resolution criterion and possible cures are suggested and discussed.</description><identifier>ISSN: 0001-1452</identifier><identifier>EISSN: 1533-385X</identifier><identifier>DOI: 10.2514/1.J059682</identifier><language>eng</language><publisher>Virginia: American Institute of Aeronautics and Astronautics</publisher><subject>Computational fluid dynamics ; Cures ; Disturbances ; Finite volume method ; Investigations ; Numerical analysis ; Numerical methods ; Reynolds number ; Viscosity</subject><ispartof>AIAA journal, 2021-08, Vol.59 (8), p.3241-3251</ispartof><rights>Copyright © 2021 by the authors All rights reserved. All requests for copying and permission to reprint should be submitted to CCC at ; employ the eISSN to initiate your request. See also AIAA Rights and Permissions .</rights><rights>Copyright © 2021 by the authors All rights reserved. All requests for copying and permission to reprint should be submitted to CCC at www.copyright.com; employ the eISSN 1533-385X to initiate your request. See also AIAA Rights and Permissions www.aiaa.org/randp.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a288t-aba34c9950a0f509b0ebcdf51278575efd80e0ae36fab2aae4cb1dc5f99b272f3</citedby><cites>FETCH-LOGICAL-a288t-aba34c9950a0f509b0ebcdf51278575efd80e0ae36fab2aae4cb1dc5f99b272f3</cites><orcidid>0000-0002-5189-9074</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Chuvakhov, Pavel V</creatorcontrib><title>Shock-Capturing Anomaly in the Interaction of Unsteady Disturbances with a Stationary Shock</title><title>AIAA journal</title><description>Shock-capturing methods for numerical fluid dynamics are capable of correctly representing the flow conditions across shocks. However, there is no guarantee that the methods remain equally applicable for unsteady problems of shock–disturbance interaction. Based on the results of wide parametric computations, this paper demonstrates an inherent weakness of shock-capturing methods related to an ambiguous station of a stationary shock on a grid cell. To this end, the interaction of stationary shocks of different intensities with elementary waves of acoustic and nonacoustic nature is investigated in a simplified formulation. The computations reveal unpredictable postshock amplitudes of disturbances unless the viscous structure of the shock is sufficiently resolved. A shock resolution criterion and possible cures are suggested and discussed.</description><subject>Computational fluid dynamics</subject><subject>Cures</subject><subject>Disturbances</subject><subject>Finite volume method</subject><subject>Investigations</subject><subject>Numerical analysis</subject><subject>Numerical methods</subject><subject>Reynolds number</subject><subject>Viscosity</subject><issn>0001-1452</issn><issn>1533-385X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNplkE1LAzEQhoMoWKsH_0FAEDxsTbKb7uZY6lel4KEWBA9hkk1saputSYrsv3drCx48DQPPPPPyInRJyYBxWtzSwTPhYlixI9SjPM-zvOJvx6hHCKEZLTg7RWcxLruNlRXtoffZotGf2Rg2aRuc_8Aj36xh1WLncVoYPPHJBNDJNR43Fs99TAbqFt-52B0o8NpE_O3SAgOeJdhxEFr8az1HJxZW0VwcZh_NH-5fx0_Z9OVxMh5NM2BVlTJQkBdaCE6AWE6EIkbp2vJdQl5yY-uKGAImH1pQDMAUWtFacyuEYiWzeR9d7b2b0HxtTUxy2WyD715KxnlZlTkXoqNu9pQOTYzBWLkJbt2FlZTIXXeSykN3HXu9Z8EB_Nn-gz_9R23u</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Chuvakhov, Pavel V</creator><general>American Institute of Aeronautics and Astronautics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5189-9074</orcidid></search><sort><creationdate>20210801</creationdate><title>Shock-Capturing Anomaly in the Interaction of Unsteady Disturbances with a Stationary Shock</title><author>Chuvakhov, Pavel V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a288t-aba34c9950a0f509b0ebcdf51278575efd80e0ae36fab2aae4cb1dc5f99b272f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Computational fluid dynamics</topic><topic>Cures</topic><topic>Disturbances</topic><topic>Finite volume method</topic><topic>Investigations</topic><topic>Numerical analysis</topic><topic>Numerical methods</topic><topic>Reynolds number</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chuvakhov, Pavel V</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>AIAA journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chuvakhov, Pavel V</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Shock-Capturing Anomaly in the Interaction of Unsteady Disturbances with a Stationary Shock</atitle><jtitle>AIAA journal</jtitle><date>2021-08-01</date><risdate>2021</risdate><volume>59</volume><issue>8</issue><spage>3241</spage><epage>3251</epage><pages>3241-3251</pages><issn>0001-1452</issn><eissn>1533-385X</eissn><abstract>Shock-capturing methods for numerical fluid dynamics are capable of correctly representing the flow conditions across shocks. However, there is no guarantee that the methods remain equally applicable for unsteady problems of shock–disturbance interaction. Based on the results of wide parametric computations, this paper demonstrates an inherent weakness of shock-capturing methods related to an ambiguous station of a stationary shock on a grid cell. To this end, the interaction of stationary shocks of different intensities with elementary waves of acoustic and nonacoustic nature is investigated in a simplified formulation. The computations reveal unpredictable postshock amplitudes of disturbances unless the viscous structure of the shock is sufficiently resolved. A shock resolution criterion and possible cures are suggested and discussed.</abstract><cop>Virginia</cop><pub>American Institute of Aeronautics and Astronautics</pub><doi>10.2514/1.J059682</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-5189-9074</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-1452 |
ispartof | AIAA journal, 2021-08, Vol.59 (8), p.3241-3251 |
issn | 0001-1452 1533-385X |
language | eng |
recordid | cdi_aiaa_journals_10_2514_1_J059682 |
source | Alma/SFX Local Collection |
subjects | Computational fluid dynamics Cures Disturbances Finite volume method Investigations Numerical analysis Numerical methods Reynolds number Viscosity |
title | Shock-Capturing Anomaly in the Interaction of Unsteady Disturbances with a Stationary Shock |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T17%3A06%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_aiaa_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Shock-Capturing%20Anomaly%20in%20the%20Interaction%20of%20Unsteady%20Disturbances%20with%20a%20Stationary%20Shock&rft.jtitle=AIAA%20journal&rft.au=Chuvakhov,%20Pavel%20V&rft.date=2021-08-01&rft.volume=59&rft.issue=8&rft.spage=3241&rft.epage=3251&rft.pages=3241-3251&rft.issn=0001-1452&rft.eissn=1533-385X&rft_id=info:doi/10.2514/1.J059682&rft_dat=%3Cproquest_aiaa_%3E2557873599%3C/proquest_aiaa_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2557873599&rft_id=info:pmid/&rfr_iscdi=true |