Shock-Capturing Anomaly in the Interaction of Unsteady Disturbances with a Stationary Shock

Shock-capturing methods for numerical fluid dynamics are capable of correctly representing the flow conditions across shocks. However, there is no guarantee that the methods remain equally applicable for unsteady problems of shock–disturbance interaction. Based on the results of wide parametric comp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIAA journal 2021-08, Vol.59 (8), p.3241-3251
1. Verfasser: Chuvakhov, Pavel V
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3251
container_issue 8
container_start_page 3241
container_title AIAA journal
container_volume 59
creator Chuvakhov, Pavel V
description Shock-capturing methods for numerical fluid dynamics are capable of correctly representing the flow conditions across shocks. However, there is no guarantee that the methods remain equally applicable for unsteady problems of shock–disturbance interaction. Based on the results of wide parametric computations, this paper demonstrates an inherent weakness of shock-capturing methods related to an ambiguous station of a stationary shock on a grid cell. To this end, the interaction of stationary shocks of different intensities with elementary waves of acoustic and nonacoustic nature is investigated in a simplified formulation. The computations reveal unpredictable postshock amplitudes of disturbances unless the viscous structure of the shock is sufficiently resolved. A shock resolution criterion and possible cures are suggested and discussed.
doi_str_mv 10.2514/1.J059682
format Article
fullrecord <record><control><sourceid>proquest_aiaa_</sourceid><recordid>TN_cdi_aiaa_journals_10_2514_1_J059682</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2557873599</sourcerecordid><originalsourceid>FETCH-LOGICAL-a288t-aba34c9950a0f509b0ebcdf51278575efd80e0ae36fab2aae4cb1dc5f99b272f3</originalsourceid><addsrcrecordid>eNplkE1LAzEQhoMoWKsH_0FAEDxsTbKb7uZY6lel4KEWBA9hkk1saputSYrsv3drCx48DQPPPPPyInRJyYBxWtzSwTPhYlixI9SjPM-zvOJvx6hHCKEZLTg7RWcxLruNlRXtoffZotGf2Rg2aRuc_8Aj36xh1WLncVoYPPHJBNDJNR43Fs99TAbqFt-52B0o8NpE_O3SAgOeJdhxEFr8az1HJxZW0VwcZh_NH-5fx0_Z9OVxMh5NM2BVlTJQkBdaCE6AWE6EIkbp2vJdQl5yY-uKGAImH1pQDMAUWtFacyuEYiWzeR9d7b2b0HxtTUxy2WyD715KxnlZlTkXoqNu9pQOTYzBWLkJbt2FlZTIXXeSykN3HXu9Z8EB_Nn-gz_9R23u</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2557873599</pqid></control><display><type>article</type><title>Shock-Capturing Anomaly in the Interaction of Unsteady Disturbances with a Stationary Shock</title><source>Alma/SFX Local Collection</source><creator>Chuvakhov, Pavel V</creator><creatorcontrib>Chuvakhov, Pavel V</creatorcontrib><description>Shock-capturing methods for numerical fluid dynamics are capable of correctly representing the flow conditions across shocks. However, there is no guarantee that the methods remain equally applicable for unsteady problems of shock–disturbance interaction. Based on the results of wide parametric computations, this paper demonstrates an inherent weakness of shock-capturing methods related to an ambiguous station of a stationary shock on a grid cell. To this end, the interaction of stationary shocks of different intensities with elementary waves of acoustic and nonacoustic nature is investigated in a simplified formulation. The computations reveal unpredictable postshock amplitudes of disturbances unless the viscous structure of the shock is sufficiently resolved. A shock resolution criterion and possible cures are suggested and discussed.</description><identifier>ISSN: 0001-1452</identifier><identifier>EISSN: 1533-385X</identifier><identifier>DOI: 10.2514/1.J059682</identifier><language>eng</language><publisher>Virginia: American Institute of Aeronautics and Astronautics</publisher><subject>Computational fluid dynamics ; Cures ; Disturbances ; Finite volume method ; Investigations ; Numerical analysis ; Numerical methods ; Reynolds number ; Viscosity</subject><ispartof>AIAA journal, 2021-08, Vol.59 (8), p.3241-3251</ispartof><rights>Copyright © 2021 by the authors All rights reserved. All requests for copying and permission to reprint should be submitted to CCC at ; employ the eISSN to initiate your request. See also AIAA Rights and Permissions .</rights><rights>Copyright © 2021 by the authors All rights reserved. All requests for copying and permission to reprint should be submitted to CCC at www.copyright.com; employ the eISSN 1533-385X to initiate your request. See also AIAA Rights and Permissions www.aiaa.org/randp.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a288t-aba34c9950a0f509b0ebcdf51278575efd80e0ae36fab2aae4cb1dc5f99b272f3</citedby><cites>FETCH-LOGICAL-a288t-aba34c9950a0f509b0ebcdf51278575efd80e0ae36fab2aae4cb1dc5f99b272f3</cites><orcidid>0000-0002-5189-9074</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Chuvakhov, Pavel V</creatorcontrib><title>Shock-Capturing Anomaly in the Interaction of Unsteady Disturbances with a Stationary Shock</title><title>AIAA journal</title><description>Shock-capturing methods for numerical fluid dynamics are capable of correctly representing the flow conditions across shocks. However, there is no guarantee that the methods remain equally applicable for unsteady problems of shock–disturbance interaction. Based on the results of wide parametric computations, this paper demonstrates an inherent weakness of shock-capturing methods related to an ambiguous station of a stationary shock on a grid cell. To this end, the interaction of stationary shocks of different intensities with elementary waves of acoustic and nonacoustic nature is investigated in a simplified formulation. The computations reveal unpredictable postshock amplitudes of disturbances unless the viscous structure of the shock is sufficiently resolved. A shock resolution criterion and possible cures are suggested and discussed.</description><subject>Computational fluid dynamics</subject><subject>Cures</subject><subject>Disturbances</subject><subject>Finite volume method</subject><subject>Investigations</subject><subject>Numerical analysis</subject><subject>Numerical methods</subject><subject>Reynolds number</subject><subject>Viscosity</subject><issn>0001-1452</issn><issn>1533-385X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNplkE1LAzEQhoMoWKsH_0FAEDxsTbKb7uZY6lel4KEWBA9hkk1saputSYrsv3drCx48DQPPPPPyInRJyYBxWtzSwTPhYlixI9SjPM-zvOJvx6hHCKEZLTg7RWcxLruNlRXtoffZotGf2Rg2aRuc_8Aj36xh1WLncVoYPPHJBNDJNR43Fs99TAbqFt-52B0o8NpE_O3SAgOeJdhxEFr8az1HJxZW0VwcZh_NH-5fx0_Z9OVxMh5NM2BVlTJQkBdaCE6AWE6EIkbp2vJdQl5yY-uKGAImH1pQDMAUWtFacyuEYiWzeR9d7b2b0HxtTUxy2WyD715KxnlZlTkXoqNu9pQOTYzBWLkJbt2FlZTIXXeSykN3HXu9Z8EB_Nn-gz_9R23u</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Chuvakhov, Pavel V</creator><general>American Institute of Aeronautics and Astronautics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5189-9074</orcidid></search><sort><creationdate>20210801</creationdate><title>Shock-Capturing Anomaly in the Interaction of Unsteady Disturbances with a Stationary Shock</title><author>Chuvakhov, Pavel V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a288t-aba34c9950a0f509b0ebcdf51278575efd80e0ae36fab2aae4cb1dc5f99b272f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Computational fluid dynamics</topic><topic>Cures</topic><topic>Disturbances</topic><topic>Finite volume method</topic><topic>Investigations</topic><topic>Numerical analysis</topic><topic>Numerical methods</topic><topic>Reynolds number</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chuvakhov, Pavel V</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>AIAA journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chuvakhov, Pavel V</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Shock-Capturing Anomaly in the Interaction of Unsteady Disturbances with a Stationary Shock</atitle><jtitle>AIAA journal</jtitle><date>2021-08-01</date><risdate>2021</risdate><volume>59</volume><issue>8</issue><spage>3241</spage><epage>3251</epage><pages>3241-3251</pages><issn>0001-1452</issn><eissn>1533-385X</eissn><abstract>Shock-capturing methods for numerical fluid dynamics are capable of correctly representing the flow conditions across shocks. However, there is no guarantee that the methods remain equally applicable for unsteady problems of shock–disturbance interaction. Based on the results of wide parametric computations, this paper demonstrates an inherent weakness of shock-capturing methods related to an ambiguous station of a stationary shock on a grid cell. To this end, the interaction of stationary shocks of different intensities with elementary waves of acoustic and nonacoustic nature is investigated in a simplified formulation. The computations reveal unpredictable postshock amplitudes of disturbances unless the viscous structure of the shock is sufficiently resolved. A shock resolution criterion and possible cures are suggested and discussed.</abstract><cop>Virginia</cop><pub>American Institute of Aeronautics and Astronautics</pub><doi>10.2514/1.J059682</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-5189-9074</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0001-1452
ispartof AIAA journal, 2021-08, Vol.59 (8), p.3241-3251
issn 0001-1452
1533-385X
language eng
recordid cdi_aiaa_journals_10_2514_1_J059682
source Alma/SFX Local Collection
subjects Computational fluid dynamics
Cures
Disturbances
Finite volume method
Investigations
Numerical analysis
Numerical methods
Reynolds number
Viscosity
title Shock-Capturing Anomaly in the Interaction of Unsteady Disturbances with a Stationary Shock
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T17%3A06%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_aiaa_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Shock-Capturing%20Anomaly%20in%20the%20Interaction%20of%20Unsteady%20Disturbances%20with%20a%20Stationary%20Shock&rft.jtitle=AIAA%20journal&rft.au=Chuvakhov,%20Pavel%20V&rft.date=2021-08-01&rft.volume=59&rft.issue=8&rft.spage=3241&rft.epage=3251&rft.pages=3241-3251&rft.issn=0001-1452&rft.eissn=1533-385X&rft_id=info:doi/10.2514/1.J059682&rft_dat=%3Cproquest_aiaa_%3E2557873599%3C/proquest_aiaa_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2557873599&rft_id=info:pmid/&rfr_iscdi=true