Independent Two-Fields Solution for Full-Potential Unsteady Transonic Flows
The paper introduces a new approach for the numerical solution of full-potential unsteady flows based on an independent approximation of the density and velocity potential fields. The solution procedure relies on an unstructured, node-based, finite volume approximation, with linear shape functions a...
Gespeichert in:
Veröffentlicht in: | AIAA journal 2010-07, Vol.48 (7), p.1391-1402 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1402 |
---|---|
container_issue | 7 |
container_start_page | 1391 |
container_title | AIAA journal |
container_volume | 48 |
creator | Parrinello, A Mantegazza, P |
description | The paper introduces a new approach for the numerical solution of full-potential unsteady flows based on an independent approximation of the density and velocity potential fields. The solution procedure relies on an unstructured, node-based, finite volume approximation, with linear shape functions and nonreflecting farfield boundary conditions. An improved upwind density biasing allows us to stabilize the solution in supersonic regions. In view of linearized aeroelastic stability and response analyses, unsteady boundary conditions are accounted for by means of a density flow transpiration. Time marching solutions are dealt using first/second-order implicit schemes, whose unconditional linearized stability properties are demonstrated. A few applications are presented to validate the method. [PUBLICATION ABSTRACT] |
doi_str_mv | 10.2514/1.J050013 |
format | Article |
fullrecord | <record><control><sourceid>proquest_aiaa_</sourceid><recordid>TN_cdi_aiaa_journals_10_2514_1_J050013</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>753661051</sourcerecordid><originalsourceid>FETCH-LOGICAL-a349t-3225f96bbdc3dfeab4178a43f086f9ff8c24f02d735b21d520114025475c0d663</originalsourceid><addsrcrecordid>eNpl0E1LwzAcBvAgCs7pwW9QBBUPnXlt2qMM69tAwQ28hTRNICNLZtMy9u2NbCjoJSHhl-cfHgDOEZxghugtmjxDBiEiB2CEGCE5KdnHIRjBdJcjyvAxOIlxmU6Yl2gEXp58q9c6Lb7P5puQ11a7NmbvwQ29DT4zocvqwbn8LfTJWOmyhY-9lu02m3fSx-CtymoXNvEUHBnpoj7b72OwqO_n08d89vrwNL2b5ZLQqs8JxsxURdO0irRGy4YiXkpKDCwLUxlTKkwNxC0nrMGoZRgiRCFmlDMF26IgY3C9y1134XPQsRcrG5V2Tnodhig4I0WBIENJXvyRyzB0Pn1OMM5xWVQVTehmh1QXYuy0EevOrmS3FQiK71IFEvtSk73cB8qopDOpAGXjzwNMIC45Zsld7Zy0Uv4O_R_4BYFRgDM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>577286994</pqid></control><display><type>article</type><title>Independent Two-Fields Solution for Full-Potential Unsteady Transonic Flows</title><source>Alma/SFX Local Collection</source><creator>Parrinello, A ; Mantegazza, P</creator><creatorcontrib>Parrinello, A ; Mantegazza, P</creatorcontrib><description>The paper introduces a new approach for the numerical solution of full-potential unsteady flows based on an independent approximation of the density and velocity potential fields. The solution procedure relies on an unstructured, node-based, finite volume approximation, with linear shape functions and nonreflecting farfield boundary conditions. An improved upwind density biasing allows us to stabilize the solution in supersonic regions. In view of linearized aeroelastic stability and response analyses, unsteady boundary conditions are accounted for by means of a density flow transpiration. Time marching solutions are dealt using first/second-order implicit schemes, whose unconditional linearized stability properties are demonstrated. A few applications are presented to validate the method. [PUBLICATION ABSTRACT]</description><identifier>ISSN: 0001-1452</identifier><identifier>EISSN: 1533-385X</identifier><identifier>DOI: 10.2514/1.J050013</identifier><identifier>CODEN: AIAJAH</identifier><language>eng</language><publisher>Reston, VA: American Institute of Aeronautics and Astronautics</publisher><subject>Aerodynamics ; Applied fluid mechanics ; Approximation ; Boundary conditions ; Compressible flows; shock and detonation phenomena ; Computational methods in fluid dynamics ; Density ; Exact sciences and technology ; Far fields ; Flow control ; Flow velocity ; Fluid dynamics ; Fundamental areas of phenomenology (including applications) ; Laminar flows ; Mathematical analysis ; Mathematical models ; Physics ; Potential fields ; Potential flows ; Shape functions ; Stability ; Supersonic aircraft ; Time marching ; Transonic flow ; Transonic flows ; Transpiration ; Unsteady ; Unsteady flow ; Validation studies</subject><ispartof>AIAA journal, 2010-07, Vol.48 (7), p.1391-1402</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright American Institute of Aeronautics and Astronautics Jul 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a349t-3225f96bbdc3dfeab4178a43f086f9ff8c24f02d735b21d520114025475c0d663</citedby><cites>FETCH-LOGICAL-a349t-3225f96bbdc3dfeab4178a43f086f9ff8c24f02d735b21d520114025475c0d663</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23028725$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Parrinello, A</creatorcontrib><creatorcontrib>Mantegazza, P</creatorcontrib><title>Independent Two-Fields Solution for Full-Potential Unsteady Transonic Flows</title><title>AIAA journal</title><description>The paper introduces a new approach for the numerical solution of full-potential unsteady flows based on an independent approximation of the density and velocity potential fields. The solution procedure relies on an unstructured, node-based, finite volume approximation, with linear shape functions and nonreflecting farfield boundary conditions. An improved upwind density biasing allows us to stabilize the solution in supersonic regions. In view of linearized aeroelastic stability and response analyses, unsteady boundary conditions are accounted for by means of a density flow transpiration. Time marching solutions are dealt using first/second-order implicit schemes, whose unconditional linearized stability properties are demonstrated. A few applications are presented to validate the method. [PUBLICATION ABSTRACT]</description><subject>Aerodynamics</subject><subject>Applied fluid mechanics</subject><subject>Approximation</subject><subject>Boundary conditions</subject><subject>Compressible flows; shock and detonation phenomena</subject><subject>Computational methods in fluid dynamics</subject><subject>Density</subject><subject>Exact sciences and technology</subject><subject>Far fields</subject><subject>Flow control</subject><subject>Flow velocity</subject><subject>Fluid dynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Laminar flows</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Physics</subject><subject>Potential fields</subject><subject>Potential flows</subject><subject>Shape functions</subject><subject>Stability</subject><subject>Supersonic aircraft</subject><subject>Time marching</subject><subject>Transonic flow</subject><subject>Transonic flows</subject><subject>Transpiration</subject><subject>Unsteady</subject><subject>Unsteady flow</subject><subject>Validation studies</subject><issn>0001-1452</issn><issn>1533-385X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNpl0E1LwzAcBvAgCs7pwW9QBBUPnXlt2qMM69tAwQ28hTRNICNLZtMy9u2NbCjoJSHhl-cfHgDOEZxghugtmjxDBiEiB2CEGCE5KdnHIRjBdJcjyvAxOIlxmU6Yl2gEXp58q9c6Lb7P5puQ11a7NmbvwQ29DT4zocvqwbn8LfTJWOmyhY-9lu02m3fSx-CtymoXNvEUHBnpoj7b72OwqO_n08d89vrwNL2b5ZLQqs8JxsxURdO0irRGy4YiXkpKDCwLUxlTKkwNxC0nrMGoZRgiRCFmlDMF26IgY3C9y1134XPQsRcrG5V2Tnodhig4I0WBIENJXvyRyzB0Pn1OMM5xWVQVTehmh1QXYuy0EevOrmS3FQiK71IFEvtSk73cB8qopDOpAGXjzwNMIC45Zsld7Zy0Uv4O_R_4BYFRgDM</recordid><startdate>20100701</startdate><enddate>20100701</enddate><creator>Parrinello, A</creator><creator>Mantegazza, P</creator><general>American Institute of Aeronautics and Astronautics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20100701</creationdate><title>Independent Two-Fields Solution for Full-Potential Unsteady Transonic Flows</title><author>Parrinello, A ; Mantegazza, P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a349t-3225f96bbdc3dfeab4178a43f086f9ff8c24f02d735b21d520114025475c0d663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Aerodynamics</topic><topic>Applied fluid mechanics</topic><topic>Approximation</topic><topic>Boundary conditions</topic><topic>Compressible flows; shock and detonation phenomena</topic><topic>Computational methods in fluid dynamics</topic><topic>Density</topic><topic>Exact sciences and technology</topic><topic>Far fields</topic><topic>Flow control</topic><topic>Flow velocity</topic><topic>Fluid dynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Laminar flows</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Physics</topic><topic>Potential fields</topic><topic>Potential flows</topic><topic>Shape functions</topic><topic>Stability</topic><topic>Supersonic aircraft</topic><topic>Time marching</topic><topic>Transonic flow</topic><topic>Transonic flows</topic><topic>Transpiration</topic><topic>Unsteady</topic><topic>Unsteady flow</topic><topic>Validation studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Parrinello, A</creatorcontrib><creatorcontrib>Mantegazza, P</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>AIAA journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Parrinello, A</au><au>Mantegazza, P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Independent Two-Fields Solution for Full-Potential Unsteady Transonic Flows</atitle><jtitle>AIAA journal</jtitle><date>2010-07-01</date><risdate>2010</risdate><volume>48</volume><issue>7</issue><spage>1391</spage><epage>1402</epage><pages>1391-1402</pages><issn>0001-1452</issn><eissn>1533-385X</eissn><coden>AIAJAH</coden><abstract>The paper introduces a new approach for the numerical solution of full-potential unsteady flows based on an independent approximation of the density and velocity potential fields. The solution procedure relies on an unstructured, node-based, finite volume approximation, with linear shape functions and nonreflecting farfield boundary conditions. An improved upwind density biasing allows us to stabilize the solution in supersonic regions. In view of linearized aeroelastic stability and response analyses, unsteady boundary conditions are accounted for by means of a density flow transpiration. Time marching solutions are dealt using first/second-order implicit schemes, whose unconditional linearized stability properties are demonstrated. A few applications are presented to validate the method. [PUBLICATION ABSTRACT]</abstract><cop>Reston, VA</cop><pub>American Institute of Aeronautics and Astronautics</pub><doi>10.2514/1.J050013</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-1452 |
ispartof | AIAA journal, 2010-07, Vol.48 (7), p.1391-1402 |
issn | 0001-1452 1533-385X |
language | eng |
recordid | cdi_aiaa_journals_10_2514_1_J050013 |
source | Alma/SFX Local Collection |
subjects | Aerodynamics Applied fluid mechanics Approximation Boundary conditions Compressible flows shock and detonation phenomena Computational methods in fluid dynamics Density Exact sciences and technology Far fields Flow control Flow velocity Fluid dynamics Fundamental areas of phenomenology (including applications) Laminar flows Mathematical analysis Mathematical models Physics Potential fields Potential flows Shape functions Stability Supersonic aircraft Time marching Transonic flow Transonic flows Transpiration Unsteady Unsteady flow Validation studies |
title | Independent Two-Fields Solution for Full-Potential Unsteady Transonic Flows |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T16%3A47%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_aiaa_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Independent%20Two-Fields%20Solution%20for%20Full-Potential%20Unsteady%20Transonic%20Flows&rft.jtitle=AIAA%20journal&rft.au=Parrinello,%20A&rft.date=2010-07-01&rft.volume=48&rft.issue=7&rft.spage=1391&rft.epage=1402&rft.pages=1391-1402&rft.issn=0001-1452&rft.eissn=1533-385X&rft.coden=AIAJAH&rft_id=info:doi/10.2514/1.J050013&rft_dat=%3Cproquest_aiaa_%3E753661051%3C/proquest_aiaa_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=577286994&rft_id=info:pmid/&rfr_iscdi=true |