Independent Two-Fields Solution for Full-Potential Unsteady Transonic Flows

The paper introduces a new approach for the numerical solution of full-potential unsteady flows based on an independent approximation of the density and velocity potential fields. The solution procedure relies on an unstructured, node-based, finite volume approximation, with linear shape functions a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIAA journal 2010-07, Vol.48 (7), p.1391-1402
Hauptverfasser: Parrinello, A, Mantegazza, P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1402
container_issue 7
container_start_page 1391
container_title AIAA journal
container_volume 48
creator Parrinello, A
Mantegazza, P
description The paper introduces a new approach for the numerical solution of full-potential unsteady flows based on an independent approximation of the density and velocity potential fields. The solution procedure relies on an unstructured, node-based, finite volume approximation, with linear shape functions and nonreflecting farfield boundary conditions. An improved upwind density biasing allows us to stabilize the solution in supersonic regions. In view of linearized aeroelastic stability and response analyses, unsteady boundary conditions are accounted for by means of a density flow transpiration. Time marching solutions are dealt using first/second-order implicit schemes, whose unconditional linearized stability properties are demonstrated. A few applications are presented to validate the method. [PUBLICATION ABSTRACT]
doi_str_mv 10.2514/1.J050013
format Article
fullrecord <record><control><sourceid>proquest_aiaa_</sourceid><recordid>TN_cdi_aiaa_journals_10_2514_1_J050013</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>753661051</sourcerecordid><originalsourceid>FETCH-LOGICAL-a349t-3225f96bbdc3dfeab4178a43f086f9ff8c24f02d735b21d520114025475c0d663</originalsourceid><addsrcrecordid>eNpl0E1LwzAcBvAgCs7pwW9QBBUPnXlt2qMM69tAwQ28hTRNICNLZtMy9u2NbCjoJSHhl-cfHgDOEZxghugtmjxDBiEiB2CEGCE5KdnHIRjBdJcjyvAxOIlxmU6Yl2gEXp58q9c6Lb7P5puQ11a7NmbvwQ29DT4zocvqwbn8LfTJWOmyhY-9lu02m3fSx-CtymoXNvEUHBnpoj7b72OwqO_n08d89vrwNL2b5ZLQqs8JxsxURdO0irRGy4YiXkpKDCwLUxlTKkwNxC0nrMGoZRgiRCFmlDMF26IgY3C9y1134XPQsRcrG5V2Tnodhig4I0WBIENJXvyRyzB0Pn1OMM5xWVQVTehmh1QXYuy0EevOrmS3FQiK71IFEvtSk73cB8qopDOpAGXjzwNMIC45Zsld7Zy0Uv4O_R_4BYFRgDM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>577286994</pqid></control><display><type>article</type><title>Independent Two-Fields Solution for Full-Potential Unsteady Transonic Flows</title><source>Alma/SFX Local Collection</source><creator>Parrinello, A ; Mantegazza, P</creator><creatorcontrib>Parrinello, A ; Mantegazza, P</creatorcontrib><description>The paper introduces a new approach for the numerical solution of full-potential unsteady flows based on an independent approximation of the density and velocity potential fields. The solution procedure relies on an unstructured, node-based, finite volume approximation, with linear shape functions and nonreflecting farfield boundary conditions. An improved upwind density biasing allows us to stabilize the solution in supersonic regions. In view of linearized aeroelastic stability and response analyses, unsteady boundary conditions are accounted for by means of a density flow transpiration. Time marching solutions are dealt using first/second-order implicit schemes, whose unconditional linearized stability properties are demonstrated. A few applications are presented to validate the method. [PUBLICATION ABSTRACT]</description><identifier>ISSN: 0001-1452</identifier><identifier>EISSN: 1533-385X</identifier><identifier>DOI: 10.2514/1.J050013</identifier><identifier>CODEN: AIAJAH</identifier><language>eng</language><publisher>Reston, VA: American Institute of Aeronautics and Astronautics</publisher><subject>Aerodynamics ; Applied fluid mechanics ; Approximation ; Boundary conditions ; Compressible flows; shock and detonation phenomena ; Computational methods in fluid dynamics ; Density ; Exact sciences and technology ; Far fields ; Flow control ; Flow velocity ; Fluid dynamics ; Fundamental areas of phenomenology (including applications) ; Laminar flows ; Mathematical analysis ; Mathematical models ; Physics ; Potential fields ; Potential flows ; Shape functions ; Stability ; Supersonic aircraft ; Time marching ; Transonic flow ; Transonic flows ; Transpiration ; Unsteady ; Unsteady flow ; Validation studies</subject><ispartof>AIAA journal, 2010-07, Vol.48 (7), p.1391-1402</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright American Institute of Aeronautics and Astronautics Jul 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a349t-3225f96bbdc3dfeab4178a43f086f9ff8c24f02d735b21d520114025475c0d663</citedby><cites>FETCH-LOGICAL-a349t-3225f96bbdc3dfeab4178a43f086f9ff8c24f02d735b21d520114025475c0d663</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23028725$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Parrinello, A</creatorcontrib><creatorcontrib>Mantegazza, P</creatorcontrib><title>Independent Two-Fields Solution for Full-Potential Unsteady Transonic Flows</title><title>AIAA journal</title><description>The paper introduces a new approach for the numerical solution of full-potential unsteady flows based on an independent approximation of the density and velocity potential fields. The solution procedure relies on an unstructured, node-based, finite volume approximation, with linear shape functions and nonreflecting farfield boundary conditions. An improved upwind density biasing allows us to stabilize the solution in supersonic regions. In view of linearized aeroelastic stability and response analyses, unsteady boundary conditions are accounted for by means of a density flow transpiration. Time marching solutions are dealt using first/second-order implicit schemes, whose unconditional linearized stability properties are demonstrated. A few applications are presented to validate the method. [PUBLICATION ABSTRACT]</description><subject>Aerodynamics</subject><subject>Applied fluid mechanics</subject><subject>Approximation</subject><subject>Boundary conditions</subject><subject>Compressible flows; shock and detonation phenomena</subject><subject>Computational methods in fluid dynamics</subject><subject>Density</subject><subject>Exact sciences and technology</subject><subject>Far fields</subject><subject>Flow control</subject><subject>Flow velocity</subject><subject>Fluid dynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Laminar flows</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Physics</subject><subject>Potential fields</subject><subject>Potential flows</subject><subject>Shape functions</subject><subject>Stability</subject><subject>Supersonic aircraft</subject><subject>Time marching</subject><subject>Transonic flow</subject><subject>Transonic flows</subject><subject>Transpiration</subject><subject>Unsteady</subject><subject>Unsteady flow</subject><subject>Validation studies</subject><issn>0001-1452</issn><issn>1533-385X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNpl0E1LwzAcBvAgCs7pwW9QBBUPnXlt2qMM69tAwQ28hTRNICNLZtMy9u2NbCjoJSHhl-cfHgDOEZxghugtmjxDBiEiB2CEGCE5KdnHIRjBdJcjyvAxOIlxmU6Yl2gEXp58q9c6Lb7P5puQ11a7NmbvwQ29DT4zocvqwbn8LfTJWOmyhY-9lu02m3fSx-CtymoXNvEUHBnpoj7b72OwqO_n08d89vrwNL2b5ZLQqs8JxsxURdO0irRGy4YiXkpKDCwLUxlTKkwNxC0nrMGoZRgiRCFmlDMF26IgY3C9y1134XPQsRcrG5V2Tnodhig4I0WBIENJXvyRyzB0Pn1OMM5xWVQVTehmh1QXYuy0EevOrmS3FQiK71IFEvtSk73cB8qopDOpAGXjzwNMIC45Zsld7Zy0Uv4O_R_4BYFRgDM</recordid><startdate>20100701</startdate><enddate>20100701</enddate><creator>Parrinello, A</creator><creator>Mantegazza, P</creator><general>American Institute of Aeronautics and Astronautics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20100701</creationdate><title>Independent Two-Fields Solution for Full-Potential Unsteady Transonic Flows</title><author>Parrinello, A ; Mantegazza, P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a349t-3225f96bbdc3dfeab4178a43f086f9ff8c24f02d735b21d520114025475c0d663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Aerodynamics</topic><topic>Applied fluid mechanics</topic><topic>Approximation</topic><topic>Boundary conditions</topic><topic>Compressible flows; shock and detonation phenomena</topic><topic>Computational methods in fluid dynamics</topic><topic>Density</topic><topic>Exact sciences and technology</topic><topic>Far fields</topic><topic>Flow control</topic><topic>Flow velocity</topic><topic>Fluid dynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Laminar flows</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Physics</topic><topic>Potential fields</topic><topic>Potential flows</topic><topic>Shape functions</topic><topic>Stability</topic><topic>Supersonic aircraft</topic><topic>Time marching</topic><topic>Transonic flow</topic><topic>Transonic flows</topic><topic>Transpiration</topic><topic>Unsteady</topic><topic>Unsteady flow</topic><topic>Validation studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Parrinello, A</creatorcontrib><creatorcontrib>Mantegazza, P</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>AIAA journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Parrinello, A</au><au>Mantegazza, P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Independent Two-Fields Solution for Full-Potential Unsteady Transonic Flows</atitle><jtitle>AIAA journal</jtitle><date>2010-07-01</date><risdate>2010</risdate><volume>48</volume><issue>7</issue><spage>1391</spage><epage>1402</epage><pages>1391-1402</pages><issn>0001-1452</issn><eissn>1533-385X</eissn><coden>AIAJAH</coden><abstract>The paper introduces a new approach for the numerical solution of full-potential unsteady flows based on an independent approximation of the density and velocity potential fields. The solution procedure relies on an unstructured, node-based, finite volume approximation, with linear shape functions and nonreflecting farfield boundary conditions. An improved upwind density biasing allows us to stabilize the solution in supersonic regions. In view of linearized aeroelastic stability and response analyses, unsteady boundary conditions are accounted for by means of a density flow transpiration. Time marching solutions are dealt using first/second-order implicit schemes, whose unconditional linearized stability properties are demonstrated. A few applications are presented to validate the method. [PUBLICATION ABSTRACT]</abstract><cop>Reston, VA</cop><pub>American Institute of Aeronautics and Astronautics</pub><doi>10.2514/1.J050013</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0001-1452
ispartof AIAA journal, 2010-07, Vol.48 (7), p.1391-1402
issn 0001-1452
1533-385X
language eng
recordid cdi_aiaa_journals_10_2514_1_J050013
source Alma/SFX Local Collection
subjects Aerodynamics
Applied fluid mechanics
Approximation
Boundary conditions
Compressible flows
shock and detonation phenomena
Computational methods in fluid dynamics
Density
Exact sciences and technology
Far fields
Flow control
Flow velocity
Fluid dynamics
Fundamental areas of phenomenology (including applications)
Laminar flows
Mathematical analysis
Mathematical models
Physics
Potential fields
Potential flows
Shape functions
Stability
Supersonic aircraft
Time marching
Transonic flow
Transonic flows
Transpiration
Unsteady
Unsteady flow
Validation studies
title Independent Two-Fields Solution for Full-Potential Unsteady Transonic Flows
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T16%3A47%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_aiaa_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Independent%20Two-Fields%20Solution%20for%20Full-Potential%20Unsteady%20Transonic%20Flows&rft.jtitle=AIAA%20journal&rft.au=Parrinello,%20A&rft.date=2010-07-01&rft.volume=48&rft.issue=7&rft.spage=1391&rft.epage=1402&rft.pages=1391-1402&rft.issn=0001-1452&rft.eissn=1533-385X&rft.coden=AIAJAH&rft_id=info:doi/10.2514/1.J050013&rft_dat=%3Cproquest_aiaa_%3E753661051%3C/proquest_aiaa_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=577286994&rft_id=info:pmid/&rfr_iscdi=true