Gust Load Alleviation on a Large Transport Airplane

This study develops an active control technology to reduce the incremental dynamic loads of a large four-engine transport airplane flying through a gust field. The mathematical model of the proposed gust-alleviation system features composite structural motions (for example, rigid-body motions, elast...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of aircraft 2016-11, Vol.53 (6), p.1932-1946
Hauptverfasser: Zhao, Yonghui, Yue, Chengyu, Hu, Haiyan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1946
container_issue 6
container_start_page 1932
container_title Journal of aircraft
container_volume 53
creator Zhao, Yonghui
Yue, Chengyu
Hu, Haiyan
description This study develops an active control technology to reduce the incremental dynamic loads of a large four-engine transport airplane flying through a gust field. The mathematical model of the proposed gust-alleviation system features composite structural motions (for example, rigid-body motions, elastic vibrations, and deflections of control surfaces) and unsteady aerodynamic forces induced by the structural motions and the gusts. A clear outline of the procedure is first provided to determine the aeroservoelastic equation of the system. Then, an adaptive feedforward controller that uses the preview information of the gust sensed by an onboard alpha probe is designed to operate the ailerons symmetrically to alleviate the wing-root bending moment induced by the gust. The rigid-body motions due to travelling gusts are also compensated for using symmetrical deflections of the elevators. To solve the problems of weight drift and weight bias that are commonly encountered in adaptive control, the circular leaky least mean-squared algorithm is applied to update the weights of the adaptive controller. The simulation results show that a large transport airplane equipped with the proposed gust-alleviation system experiences a significantly lower wing-root bending moment in both stationary and nonstationary gusty environments.
doi_str_mv 10.2514/1.C033713
format Article
fullrecord <record><control><sourceid>proquest_aiaa_</sourceid><recordid>TN_cdi_aiaa_journals_10_2514_1_C033713</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2493175893</sourcerecordid><originalsourceid>FETCH-LOGICAL-a288t-a056e13b00135a4720e950bc38a9663d490d626a3dc5959b0f379038b3c961403</originalsourceid><addsrcrecordid>eNpl0MFLhEAUBvAhCrKtQ_-BEAQd3N74nHHmKNJugdBlOw9PHcPF1GY06L_PcKFD8OBdfnwffIzdctjGgiePfJsDYsrxjAVcIEaopDpnAUDMIyWlvmRX3h8BQEGaBgz3s5_CYqA6zLrOfrU0tUMfLkdhQe7dhgdHvR8HN4VZ68aOenvNLhrqvL05_Q172z0d8ueoeN2_5FkRUazUFBEIaTmWABwFJWkMVgsoK1SkpcQ60VDLWBLWldBCl9BgqgFViZWWPAHcsLs1d3TD52z9ZI7D7Pql0sSJRp4KpXFRD6uq3OC9s40ZXftB7ttwML-bGG5Omyz2frXUEv2l_Yc_reFbjg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2493175893</pqid></control><display><type>article</type><title>Gust Load Alleviation on a Large Transport Airplane</title><source>Alma/SFX Local Collection</source><creator>Zhao, Yonghui ; Yue, Chengyu ; Hu, Haiyan</creator><creatorcontrib>Zhao, Yonghui ; Yue, Chengyu ; Hu, Haiyan</creatorcontrib><description>This study develops an active control technology to reduce the incremental dynamic loads of a large four-engine transport airplane flying through a gust field. The mathematical model of the proposed gust-alleviation system features composite structural motions (for example, rigid-body motions, elastic vibrations, and deflections of control surfaces) and unsteady aerodynamic forces induced by the structural motions and the gusts. A clear outline of the procedure is first provided to determine the aeroservoelastic equation of the system. Then, an adaptive feedforward controller that uses the preview information of the gust sensed by an onboard alpha probe is designed to operate the ailerons symmetrically to alleviate the wing-root bending moment induced by the gust. The rigid-body motions due to travelling gusts are also compensated for using symmetrical deflections of the elevators. To solve the problems of weight drift and weight bias that are commonly encountered in adaptive control, the circular leaky least mean-squared algorithm is applied to update the weights of the adaptive controller. The simulation results show that a large transport airplane equipped with the proposed gust-alleviation system experiences a significantly lower wing-root bending moment in both stationary and nonstationary gusty environments.</description><identifier>ISSN: 0021-8669</identifier><identifier>EISSN: 1533-3868</identifier><identifier>DOI: 10.2514/1.C033713</identifier><language>eng</language><publisher>Virginia: American Institute of Aeronautics and Astronautics</publisher><subject>Active control ; Adaptive control ; Aerodynamic forces ; Aeronautics ; Algorithms ; Bending moments ; Control algorithms ; Controllers ; Design ; Dynamic loads ; Elevators (control surfaces) ; Feedforward control ; Gust loads ; Gusts ; Load ; Load alleviation ; Mechanics ; Rigid-body dynamics ; Structural engineering ; Velocity ; Weight ; Wing roots</subject><ispartof>Journal of aircraft, 2016-11, Vol.53 (6), p.1932-1946</ispartof><rights>Copyright © 2016 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. All requests for copying and permission to reprint should be submitted to CCC at ; employ the ISSN (print) or (online) to initiate your request. See also AIAA Rights and Permissions .</rights><rights>Copyright © 2016 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. All requests for copying and permission to reprint should be submitted to CCC at www.copyright.com; employ the ISSN 0021-8669 (print) or 1533-3868 (online) to initiate your request. See also AIAA Rights and Permissions www.aiaa.org/randp.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a288t-a056e13b00135a4720e950bc38a9663d490d626a3dc5959b0f379038b3c961403</citedby><cites>FETCH-LOGICAL-a288t-a056e13b00135a4720e950bc38a9663d490d626a3dc5959b0f379038b3c961403</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Zhao, Yonghui</creatorcontrib><creatorcontrib>Yue, Chengyu</creatorcontrib><creatorcontrib>Hu, Haiyan</creatorcontrib><title>Gust Load Alleviation on a Large Transport Airplane</title><title>Journal of aircraft</title><description>This study develops an active control technology to reduce the incremental dynamic loads of a large four-engine transport airplane flying through a gust field. The mathematical model of the proposed gust-alleviation system features composite structural motions (for example, rigid-body motions, elastic vibrations, and deflections of control surfaces) and unsteady aerodynamic forces induced by the structural motions and the gusts. A clear outline of the procedure is first provided to determine the aeroservoelastic equation of the system. Then, an adaptive feedforward controller that uses the preview information of the gust sensed by an onboard alpha probe is designed to operate the ailerons symmetrically to alleviate the wing-root bending moment induced by the gust. The rigid-body motions due to travelling gusts are also compensated for using symmetrical deflections of the elevators. To solve the problems of weight drift and weight bias that are commonly encountered in adaptive control, the circular leaky least mean-squared algorithm is applied to update the weights of the adaptive controller. The simulation results show that a large transport airplane equipped with the proposed gust-alleviation system experiences a significantly lower wing-root bending moment in both stationary and nonstationary gusty environments.</description><subject>Active control</subject><subject>Adaptive control</subject><subject>Aerodynamic forces</subject><subject>Aeronautics</subject><subject>Algorithms</subject><subject>Bending moments</subject><subject>Control algorithms</subject><subject>Controllers</subject><subject>Design</subject><subject>Dynamic loads</subject><subject>Elevators (control surfaces)</subject><subject>Feedforward control</subject><subject>Gust loads</subject><subject>Gusts</subject><subject>Load</subject><subject>Load alleviation</subject><subject>Mechanics</subject><subject>Rigid-body dynamics</subject><subject>Structural engineering</subject><subject>Velocity</subject><subject>Weight</subject><subject>Wing roots</subject><issn>0021-8669</issn><issn>1533-3868</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNpl0MFLhEAUBvAhCrKtQ_-BEAQd3N74nHHmKNJugdBlOw9PHcPF1GY06L_PcKFD8OBdfnwffIzdctjGgiePfJsDYsrxjAVcIEaopDpnAUDMIyWlvmRX3h8BQEGaBgz3s5_CYqA6zLrOfrU0tUMfLkdhQe7dhgdHvR8HN4VZ68aOenvNLhrqvL05_Q172z0d8ueoeN2_5FkRUazUFBEIaTmWABwFJWkMVgsoK1SkpcQ60VDLWBLWldBCl9BgqgFViZWWPAHcsLs1d3TD52z9ZI7D7Pql0sSJRp4KpXFRD6uq3OC9s40ZXftB7ttwML-bGG5Omyz2frXUEv2l_Yc_reFbjg</recordid><startdate>20161101</startdate><enddate>20161101</enddate><creator>Zhao, Yonghui</creator><creator>Yue, Chengyu</creator><creator>Hu, Haiyan</creator><general>American Institute of Aeronautics and Astronautics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><scope>U9A</scope></search><sort><creationdate>20161101</creationdate><title>Gust Load Alleviation on a Large Transport Airplane</title><author>Zhao, Yonghui ; Yue, Chengyu ; Hu, Haiyan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a288t-a056e13b00135a4720e950bc38a9663d490d626a3dc5959b0f379038b3c961403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Active control</topic><topic>Adaptive control</topic><topic>Aerodynamic forces</topic><topic>Aeronautics</topic><topic>Algorithms</topic><topic>Bending moments</topic><topic>Control algorithms</topic><topic>Controllers</topic><topic>Design</topic><topic>Dynamic loads</topic><topic>Elevators (control surfaces)</topic><topic>Feedforward control</topic><topic>Gust loads</topic><topic>Gusts</topic><topic>Load</topic><topic>Load alleviation</topic><topic>Mechanics</topic><topic>Rigid-body dynamics</topic><topic>Structural engineering</topic><topic>Velocity</topic><topic>Weight</topic><topic>Wing roots</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Yonghui</creatorcontrib><creatorcontrib>Yue, Chengyu</creatorcontrib><creatorcontrib>Hu, Haiyan</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of aircraft</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Yonghui</au><au>Yue, Chengyu</au><au>Hu, Haiyan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gust Load Alleviation on a Large Transport Airplane</atitle><jtitle>Journal of aircraft</jtitle><date>2016-11-01</date><risdate>2016</risdate><volume>53</volume><issue>6</issue><spage>1932</spage><epage>1946</epage><pages>1932-1946</pages><issn>0021-8669</issn><eissn>1533-3868</eissn><abstract>This study develops an active control technology to reduce the incremental dynamic loads of a large four-engine transport airplane flying through a gust field. The mathematical model of the proposed gust-alleviation system features composite structural motions (for example, rigid-body motions, elastic vibrations, and deflections of control surfaces) and unsteady aerodynamic forces induced by the structural motions and the gusts. A clear outline of the procedure is first provided to determine the aeroservoelastic equation of the system. Then, an adaptive feedforward controller that uses the preview information of the gust sensed by an onboard alpha probe is designed to operate the ailerons symmetrically to alleviate the wing-root bending moment induced by the gust. The rigid-body motions due to travelling gusts are also compensated for using symmetrical deflections of the elevators. To solve the problems of weight drift and weight bias that are commonly encountered in adaptive control, the circular leaky least mean-squared algorithm is applied to update the weights of the adaptive controller. The simulation results show that a large transport airplane equipped with the proposed gust-alleviation system experiences a significantly lower wing-root bending moment in both stationary and nonstationary gusty environments.</abstract><cop>Virginia</cop><pub>American Institute of Aeronautics and Astronautics</pub><doi>10.2514/1.C033713</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-8669
ispartof Journal of aircraft, 2016-11, Vol.53 (6), p.1932-1946
issn 0021-8669
1533-3868
language eng
recordid cdi_aiaa_journals_10_2514_1_C033713
source Alma/SFX Local Collection
subjects Active control
Adaptive control
Aerodynamic forces
Aeronautics
Algorithms
Bending moments
Control algorithms
Controllers
Design
Dynamic loads
Elevators (control surfaces)
Feedforward control
Gust loads
Gusts
Load
Load alleviation
Mechanics
Rigid-body dynamics
Structural engineering
Velocity
Weight
Wing roots
title Gust Load Alleviation on a Large Transport Airplane
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T22%3A39%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_aiaa_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gust%20Load%20Alleviation%20on%20a%20Large%20Transport%20Airplane&rft.jtitle=Journal%20of%20aircraft&rft.au=Zhao,%20Yonghui&rft.date=2016-11-01&rft.volume=53&rft.issue=6&rft.spage=1932&rft.epage=1946&rft.pages=1932-1946&rft.issn=0021-8669&rft.eissn=1533-3868&rft_id=info:doi/10.2514/1.C033713&rft_dat=%3Cproquest_aiaa_%3E2493175893%3C/proquest_aiaa_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2493175893&rft_id=info:pmid/&rfr_iscdi=true