Impact of Dilute Multiphase Flow in Supersonic Micronozzles
In this study, a computational investigation of multiphase flow within supersonic micronozzles has been performed in an effort to quantify the impact on thrust production and nozzle efficiency. Motivated by a scenario of incomplete chemical decomposition within a miniaturized, microfabricated monopr...
Gespeichert in:
Veröffentlicht in: | Journal of spacecraft and rockets 2019-01, Vol.56 (1), p.190-199 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 199 |
---|---|
container_issue | 1 |
container_start_page | 190 |
container_title | Journal of spacecraft and rockets |
container_volume | 56 |
creator | Greenfield, B Louisos, W. F Hitt, D. L |
description | In this study, a computational investigation of multiphase flow within supersonic micronozzles has been performed in an effort to quantify the impact on thrust production and nozzle efficiency. Motivated by a scenario of incomplete chemical decomposition within a miniaturized, microfabricated monopropellant micropropulsion system, the multiphase flow is modeled over a range of throat Reynolds numbers (160≤Ret≤780) to consist of liquid droplets ranging in size from 0.1 to 3.0 μm in diameter (Stokes numbers 0.01–10.0) and with mass loadings up to 100% relative to the gas phase. The results indicate that the presence of liquid droplets within the supersonic gas flow can substantially degrade micronozzle performance with thrust reductions approaching 19% and specific impulse reductions of up to 35% possible for sub-micrometer-scale droplets at Ret=780 and a mass loading of 100%. |
doi_str_mv | 10.2514/1.A34215 |
format | Article |
fullrecord | <record><control><sourceid>proquest_aiaa_</sourceid><recordid>TN_cdi_aiaa_journals_10_2514_1_A34215</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2169365477</sourcerecordid><originalsourceid>FETCH-LOGICAL-a285t-df49830816a933696312b84ee3838fc7604dfcaf269613881b6852e836748bfe3</originalsourceid><addsrcrecordid>eNpl0EFLwzAUB_AgCs4p-BECInjpTPKSNMXTmE4HGx7Uc0i7BDO6piYt4j69lQoePL3D-_F_jz9Cl5TMmKD8ls7mwBkVR2hCBUAm84IfowkhjGVcCnKKzlLaEUKlksUE3a32rak6HBy-93XfWbzp68637yZZvKzDJ_YNfulbG1NofIU3voqhCYdDbdM5OnGmTvbid07R2_LhdfGUrZ8fV4v5OjNMiS7bOl4oIIpKUwDIQgJlpeLWggLlqlwSvnWVcWxYUVCKllIJZhXInKvSWZiiqzG3jeGjt6nTu9DHZjipGZUFSMHzfFA3oxoeTClap9vo9yZ-aUr0TzWa6rGagV6P1Hhj_sL-uW8ao178</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2169365477</pqid></control><display><type>article</type><title>Impact of Dilute Multiphase Flow in Supersonic Micronozzles</title><source>Alma/SFX Local Collection</source><creator>Greenfield, B ; Louisos, W. F ; Hitt, D. L</creator><creatorcontrib>Greenfield, B ; Louisos, W. F ; Hitt, D. L</creatorcontrib><description>In this study, a computational investigation of multiphase flow within supersonic micronozzles has been performed in an effort to quantify the impact on thrust production and nozzle efficiency. Motivated by a scenario of incomplete chemical decomposition within a miniaturized, microfabricated monopropellant micropropulsion system, the multiphase flow is modeled over a range of throat Reynolds numbers (160≤Ret≤780) to consist of liquid droplets ranging in size from 0.1 to 3.0 μm in diameter (Stokes numbers 0.01–10.0) and with mass loadings up to 100% relative to the gas phase. The results indicate that the presence of liquid droplets within the supersonic gas flow can substantially degrade micronozzle performance with thrust reductions approaching 19% and specific impulse reductions of up to 35% possible for sub-micrometer-scale droplets at Ret=780 and a mass loading of 100%.</description><identifier>ISSN: 0022-4650</identifier><identifier>EISSN: 1533-6794</identifier><identifier>DOI: 10.2514/1.A34215</identifier><language>eng</language><publisher>Reston: American Institute of Aeronautics and Astronautics</publisher><subject>Computational fluid dynamics ; Droplets ; Gas flow ; Micropropulsion ; Multiphase flow ; Nozzle efficiency ; Nozzles ; Organic chemistry ; Performance degradation ; Specific impulse ; Vapor phases</subject><ispartof>Journal of spacecraft and rockets, 2019-01, Vol.56 (1), p.190-199</ispartof><rights>Copyright © 2018 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. All requests for copying and permission to reprint should be submitted to CCC at ; employ the ISSN (print) or (online) to initiate your request. See also AIAA Rights and Permissions .</rights><rights>Copyright © 2018 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. All requests for copying and permission to reprint should be submitted to CCC at www.copyright.com; employ the ISSN 0022-4650 (print) or 1533-6794 (online) to initiate your request. See also AIAA Rights and Permissions www.aiaa.org/randp.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a285t-df49830816a933696312b84ee3838fc7604dfcaf269613881b6852e836748bfe3</citedby><cites>FETCH-LOGICAL-a285t-df49830816a933696312b84ee3838fc7604dfcaf269613881b6852e836748bfe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Greenfield, B</creatorcontrib><creatorcontrib>Louisos, W. F</creatorcontrib><creatorcontrib>Hitt, D. L</creatorcontrib><title>Impact of Dilute Multiphase Flow in Supersonic Micronozzles</title><title>Journal of spacecraft and rockets</title><description>In this study, a computational investigation of multiphase flow within supersonic micronozzles has been performed in an effort to quantify the impact on thrust production and nozzle efficiency. Motivated by a scenario of incomplete chemical decomposition within a miniaturized, microfabricated monopropellant micropropulsion system, the multiphase flow is modeled over a range of throat Reynolds numbers (160≤Ret≤780) to consist of liquid droplets ranging in size from 0.1 to 3.0 μm in diameter (Stokes numbers 0.01–10.0) and with mass loadings up to 100% relative to the gas phase. The results indicate that the presence of liquid droplets within the supersonic gas flow can substantially degrade micronozzle performance with thrust reductions approaching 19% and specific impulse reductions of up to 35% possible for sub-micrometer-scale droplets at Ret=780 and a mass loading of 100%.</description><subject>Computational fluid dynamics</subject><subject>Droplets</subject><subject>Gas flow</subject><subject>Micropropulsion</subject><subject>Multiphase flow</subject><subject>Nozzle efficiency</subject><subject>Nozzles</subject><subject>Organic chemistry</subject><subject>Performance degradation</subject><subject>Specific impulse</subject><subject>Vapor phases</subject><issn>0022-4650</issn><issn>1533-6794</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpl0EFLwzAUB_AgCs4p-BECInjpTPKSNMXTmE4HGx7Uc0i7BDO6piYt4j69lQoePL3D-_F_jz9Cl5TMmKD8ls7mwBkVR2hCBUAm84IfowkhjGVcCnKKzlLaEUKlksUE3a32rak6HBy-93XfWbzp68637yZZvKzDJ_YNfulbG1NofIU3voqhCYdDbdM5OnGmTvbid07R2_LhdfGUrZ8fV4v5OjNMiS7bOl4oIIpKUwDIQgJlpeLWggLlqlwSvnWVcWxYUVCKllIJZhXInKvSWZiiqzG3jeGjt6nTu9DHZjipGZUFSMHzfFA3oxoeTClap9vo9yZ-aUr0TzWa6rGagV6P1Hhj_sL-uW8ao178</recordid><startdate>201901</startdate><enddate>201901</enddate><creator>Greenfield, B</creator><creator>Louisos, W. F</creator><creator>Hitt, D. L</creator><general>American Institute of Aeronautics and Astronautics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>201901</creationdate><title>Impact of Dilute Multiphase Flow in Supersonic Micronozzles</title><author>Greenfield, B ; Louisos, W. F ; Hitt, D. L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a285t-df49830816a933696312b84ee3838fc7604dfcaf269613881b6852e836748bfe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Computational fluid dynamics</topic><topic>Droplets</topic><topic>Gas flow</topic><topic>Micropropulsion</topic><topic>Multiphase flow</topic><topic>Nozzle efficiency</topic><topic>Nozzles</topic><topic>Organic chemistry</topic><topic>Performance degradation</topic><topic>Specific impulse</topic><topic>Vapor phases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Greenfield, B</creatorcontrib><creatorcontrib>Louisos, W. F</creatorcontrib><creatorcontrib>Hitt, D. L</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of spacecraft and rockets</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Greenfield, B</au><au>Louisos, W. F</au><au>Hitt, D. L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impact of Dilute Multiphase Flow in Supersonic Micronozzles</atitle><jtitle>Journal of spacecraft and rockets</jtitle><date>2019-01</date><risdate>2019</risdate><volume>56</volume><issue>1</issue><spage>190</spage><epage>199</epage><pages>190-199</pages><issn>0022-4650</issn><eissn>1533-6794</eissn><abstract>In this study, a computational investigation of multiphase flow within supersonic micronozzles has been performed in an effort to quantify the impact on thrust production and nozzle efficiency. Motivated by a scenario of incomplete chemical decomposition within a miniaturized, microfabricated monopropellant micropropulsion system, the multiphase flow is modeled over a range of throat Reynolds numbers (160≤Ret≤780) to consist of liquid droplets ranging in size from 0.1 to 3.0 μm in diameter (Stokes numbers 0.01–10.0) and with mass loadings up to 100% relative to the gas phase. The results indicate that the presence of liquid droplets within the supersonic gas flow can substantially degrade micronozzle performance with thrust reductions approaching 19% and specific impulse reductions of up to 35% possible for sub-micrometer-scale droplets at Ret=780 and a mass loading of 100%.</abstract><cop>Reston</cop><pub>American Institute of Aeronautics and Astronautics</pub><doi>10.2514/1.A34215</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-4650 |
ispartof | Journal of spacecraft and rockets, 2019-01, Vol.56 (1), p.190-199 |
issn | 0022-4650 1533-6794 |
language | eng |
recordid | cdi_aiaa_journals_10_2514_1_A34215 |
source | Alma/SFX Local Collection |
subjects | Computational fluid dynamics Droplets Gas flow Micropropulsion Multiphase flow Nozzle efficiency Nozzles Organic chemistry Performance degradation Specific impulse Vapor phases |
title | Impact of Dilute Multiphase Flow in Supersonic Micronozzles |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T10%3A37%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_aiaa_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impact%20of%20Dilute%20Multiphase%20Flow%20in%20Supersonic%20Micronozzles&rft.jtitle=Journal%20of%20spacecraft%20and%20rockets&rft.au=Greenfield,%20B&rft.date=2019-01&rft.volume=56&rft.issue=1&rft.spage=190&rft.epage=199&rft.pages=190-199&rft.issn=0022-4650&rft.eissn=1533-6794&rft_id=info:doi/10.2514/1.A34215&rft_dat=%3Cproquest_aiaa_%3E2169365477%3C/proquest_aiaa_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2169365477&rft_id=info:pmid/&rfr_iscdi=true |