Impact of Dilute Multiphase Flow in Supersonic Micronozzles

In this study, a computational investigation of multiphase flow within supersonic micronozzles has been performed in an effort to quantify the impact on thrust production and nozzle efficiency. Motivated by a scenario of incomplete chemical decomposition within a miniaturized, microfabricated monopr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of spacecraft and rockets 2019-01, Vol.56 (1), p.190-199
Hauptverfasser: Greenfield, B, Louisos, W. F, Hitt, D. L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 199
container_issue 1
container_start_page 190
container_title Journal of spacecraft and rockets
container_volume 56
creator Greenfield, B
Louisos, W. F
Hitt, D. L
description In this study, a computational investigation of multiphase flow within supersonic micronozzles has been performed in an effort to quantify the impact on thrust production and nozzle efficiency. Motivated by a scenario of incomplete chemical decomposition within a miniaturized, microfabricated monopropellant micropropulsion system, the multiphase flow is modeled over a range of throat Reynolds numbers (160≤Ret≤780) to consist of liquid droplets ranging in size from 0.1 to 3.0  μm in diameter (Stokes numbers 0.01–10.0) and with mass loadings up to 100% relative to the gas phase. The results indicate that the presence of liquid droplets within the supersonic gas flow can substantially degrade micronozzle performance with thrust reductions approaching 19% and specific impulse reductions of up to 35% possible for sub-micrometer-scale droplets at Ret=780 and a mass loading of 100%.
doi_str_mv 10.2514/1.A34215
format Article
fullrecord <record><control><sourceid>proquest_aiaa_</sourceid><recordid>TN_cdi_aiaa_journals_10_2514_1_A34215</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2169365477</sourcerecordid><originalsourceid>FETCH-LOGICAL-a285t-df49830816a933696312b84ee3838fc7604dfcaf269613881b6852e836748bfe3</originalsourceid><addsrcrecordid>eNpl0EFLwzAUB_AgCs4p-BECInjpTPKSNMXTmE4HGx7Uc0i7BDO6piYt4j69lQoePL3D-_F_jz9Cl5TMmKD8ls7mwBkVR2hCBUAm84IfowkhjGVcCnKKzlLaEUKlksUE3a32rak6HBy-93XfWbzp68637yZZvKzDJ_YNfulbG1NofIU3voqhCYdDbdM5OnGmTvbid07R2_LhdfGUrZ8fV4v5OjNMiS7bOl4oIIpKUwDIQgJlpeLWggLlqlwSvnWVcWxYUVCKllIJZhXInKvSWZiiqzG3jeGjt6nTu9DHZjipGZUFSMHzfFA3oxoeTClap9vo9yZ-aUr0TzWa6rGagV6P1Hhj_sL-uW8ao178</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2169365477</pqid></control><display><type>article</type><title>Impact of Dilute Multiphase Flow in Supersonic Micronozzles</title><source>Alma/SFX Local Collection</source><creator>Greenfield, B ; Louisos, W. F ; Hitt, D. L</creator><creatorcontrib>Greenfield, B ; Louisos, W. F ; Hitt, D. L</creatorcontrib><description>In this study, a computational investigation of multiphase flow within supersonic micronozzles has been performed in an effort to quantify the impact on thrust production and nozzle efficiency. Motivated by a scenario of incomplete chemical decomposition within a miniaturized, microfabricated monopropellant micropropulsion system, the multiphase flow is modeled over a range of throat Reynolds numbers (160≤Ret≤780) to consist of liquid droplets ranging in size from 0.1 to 3.0  μm in diameter (Stokes numbers 0.01–10.0) and with mass loadings up to 100% relative to the gas phase. The results indicate that the presence of liquid droplets within the supersonic gas flow can substantially degrade micronozzle performance with thrust reductions approaching 19% and specific impulse reductions of up to 35% possible for sub-micrometer-scale droplets at Ret=780 and a mass loading of 100%.</description><identifier>ISSN: 0022-4650</identifier><identifier>EISSN: 1533-6794</identifier><identifier>DOI: 10.2514/1.A34215</identifier><language>eng</language><publisher>Reston: American Institute of Aeronautics and Astronautics</publisher><subject>Computational fluid dynamics ; Droplets ; Gas flow ; Micropropulsion ; Multiphase flow ; Nozzle efficiency ; Nozzles ; Organic chemistry ; Performance degradation ; Specific impulse ; Vapor phases</subject><ispartof>Journal of spacecraft and rockets, 2019-01, Vol.56 (1), p.190-199</ispartof><rights>Copyright © 2018 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. All requests for copying and permission to reprint should be submitted to CCC at ; employ the ISSN (print) or (online) to initiate your request. See also AIAA Rights and Permissions .</rights><rights>Copyright © 2018 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. All requests for copying and permission to reprint should be submitted to CCC at www.copyright.com; employ the ISSN 0022-4650 (print) or 1533-6794 (online) to initiate your request. See also AIAA Rights and Permissions www.aiaa.org/randp.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a285t-df49830816a933696312b84ee3838fc7604dfcaf269613881b6852e836748bfe3</citedby><cites>FETCH-LOGICAL-a285t-df49830816a933696312b84ee3838fc7604dfcaf269613881b6852e836748bfe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Greenfield, B</creatorcontrib><creatorcontrib>Louisos, W. F</creatorcontrib><creatorcontrib>Hitt, D. L</creatorcontrib><title>Impact of Dilute Multiphase Flow in Supersonic Micronozzles</title><title>Journal of spacecraft and rockets</title><description>In this study, a computational investigation of multiphase flow within supersonic micronozzles has been performed in an effort to quantify the impact on thrust production and nozzle efficiency. Motivated by a scenario of incomplete chemical decomposition within a miniaturized, microfabricated monopropellant micropropulsion system, the multiphase flow is modeled over a range of throat Reynolds numbers (160≤Ret≤780) to consist of liquid droplets ranging in size from 0.1 to 3.0  μm in diameter (Stokes numbers 0.01–10.0) and with mass loadings up to 100% relative to the gas phase. The results indicate that the presence of liquid droplets within the supersonic gas flow can substantially degrade micronozzle performance with thrust reductions approaching 19% and specific impulse reductions of up to 35% possible for sub-micrometer-scale droplets at Ret=780 and a mass loading of 100%.</description><subject>Computational fluid dynamics</subject><subject>Droplets</subject><subject>Gas flow</subject><subject>Micropropulsion</subject><subject>Multiphase flow</subject><subject>Nozzle efficiency</subject><subject>Nozzles</subject><subject>Organic chemistry</subject><subject>Performance degradation</subject><subject>Specific impulse</subject><subject>Vapor phases</subject><issn>0022-4650</issn><issn>1533-6794</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpl0EFLwzAUB_AgCs4p-BECInjpTPKSNMXTmE4HGx7Uc0i7BDO6piYt4j69lQoePL3D-_F_jz9Cl5TMmKD8ls7mwBkVR2hCBUAm84IfowkhjGVcCnKKzlLaEUKlksUE3a32rak6HBy-93XfWbzp68637yZZvKzDJ_YNfulbG1NofIU3voqhCYdDbdM5OnGmTvbid07R2_LhdfGUrZ8fV4v5OjNMiS7bOl4oIIpKUwDIQgJlpeLWggLlqlwSvnWVcWxYUVCKllIJZhXInKvSWZiiqzG3jeGjt6nTu9DHZjipGZUFSMHzfFA3oxoeTClap9vo9yZ-aUr0TzWa6rGagV6P1Hhj_sL-uW8ao178</recordid><startdate>201901</startdate><enddate>201901</enddate><creator>Greenfield, B</creator><creator>Louisos, W. F</creator><creator>Hitt, D. L</creator><general>American Institute of Aeronautics and Astronautics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>201901</creationdate><title>Impact of Dilute Multiphase Flow in Supersonic Micronozzles</title><author>Greenfield, B ; Louisos, W. F ; Hitt, D. L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a285t-df49830816a933696312b84ee3838fc7604dfcaf269613881b6852e836748bfe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Computational fluid dynamics</topic><topic>Droplets</topic><topic>Gas flow</topic><topic>Micropropulsion</topic><topic>Multiphase flow</topic><topic>Nozzle efficiency</topic><topic>Nozzles</topic><topic>Organic chemistry</topic><topic>Performance degradation</topic><topic>Specific impulse</topic><topic>Vapor phases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Greenfield, B</creatorcontrib><creatorcontrib>Louisos, W. F</creatorcontrib><creatorcontrib>Hitt, D. L</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of spacecraft and rockets</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Greenfield, B</au><au>Louisos, W. F</au><au>Hitt, D. L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impact of Dilute Multiphase Flow in Supersonic Micronozzles</atitle><jtitle>Journal of spacecraft and rockets</jtitle><date>2019-01</date><risdate>2019</risdate><volume>56</volume><issue>1</issue><spage>190</spage><epage>199</epage><pages>190-199</pages><issn>0022-4650</issn><eissn>1533-6794</eissn><abstract>In this study, a computational investigation of multiphase flow within supersonic micronozzles has been performed in an effort to quantify the impact on thrust production and nozzle efficiency. Motivated by a scenario of incomplete chemical decomposition within a miniaturized, microfabricated monopropellant micropropulsion system, the multiphase flow is modeled over a range of throat Reynolds numbers (160≤Ret≤780) to consist of liquid droplets ranging in size from 0.1 to 3.0  μm in diameter (Stokes numbers 0.01–10.0) and with mass loadings up to 100% relative to the gas phase. The results indicate that the presence of liquid droplets within the supersonic gas flow can substantially degrade micronozzle performance with thrust reductions approaching 19% and specific impulse reductions of up to 35% possible for sub-micrometer-scale droplets at Ret=780 and a mass loading of 100%.</abstract><cop>Reston</cop><pub>American Institute of Aeronautics and Astronautics</pub><doi>10.2514/1.A34215</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-4650
ispartof Journal of spacecraft and rockets, 2019-01, Vol.56 (1), p.190-199
issn 0022-4650
1533-6794
language eng
recordid cdi_aiaa_journals_10_2514_1_A34215
source Alma/SFX Local Collection
subjects Computational fluid dynamics
Droplets
Gas flow
Micropropulsion
Multiphase flow
Nozzle efficiency
Nozzles
Organic chemistry
Performance degradation
Specific impulse
Vapor phases
title Impact of Dilute Multiphase Flow in Supersonic Micronozzles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T10%3A37%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_aiaa_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impact%20of%20Dilute%20Multiphase%20Flow%20in%20Supersonic%20Micronozzles&rft.jtitle=Journal%20of%20spacecraft%20and%20rockets&rft.au=Greenfield,%20B&rft.date=2019-01&rft.volume=56&rft.issue=1&rft.spage=190&rft.epage=199&rft.pages=190-199&rft.issn=0022-4650&rft.eissn=1533-6794&rft_id=info:doi/10.2514/1.A34215&rft_dat=%3Cproquest_aiaa_%3E2169365477%3C/proquest_aiaa_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2169365477&rft_id=info:pmid/&rfr_iscdi=true