Tunneling and Polaron Charge Transport through Li2O2 in Li–O2 Batteries

We describe Li–O2 discharge experiments in a bulk electrolysis cell as a function of current density and temperature. In combination with a simple model, these imply that charge transport through Li2O2 in Li–O2 batteries at practical current densities is based principally on hole tunneling, with hol...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry letters 2013-10, Vol.4 (20), p.3494-3499
Hauptverfasser: Luntz, A. C, Viswanathan, V, Voss, J, Varley, J. B, Nørskov, J. K, Scheffler, R, Speidel, A
Format: Artikel
Sprache:eng ; jpn
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3499
container_issue 20
container_start_page 3494
container_title The journal of physical chemistry letters
container_volume 4
creator Luntz, A. C
Viswanathan, V
Voss, J
Varley, J. B
Nørskov, J. K
Scheffler, R
Speidel, A
description We describe Li–O2 discharge experiments in a bulk electrolysis cell as a function of current density and temperature. In combination with a simple model, these imply that charge transport through Li2O2 in Li–O2 batteries at practical current densities is based principally on hole tunneling, with hole polaron conductivity playing a significant role near the end of very low current discharges and at temperatures greater than 30 °C. We also show that charge-transport limitations are much less significant during charging than those in discharge. A key element of the model that qualitatively explains all results is the alignment of the Li2O2 valence band maximum close to the electrochemical Fermi energy and how this alignment varies with overpotentials during discharge and charge. In fact, comparison of the model with the experiments allows determination of the alignment of the bands relative to the electrochemical Fermi level.
doi_str_mv 10.1021/jz401926f
format Article
fullrecord <record><control><sourceid>acs</sourceid><recordid>TN_cdi_acs_journals_10_1021_jz401926f</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c022191948</sourcerecordid><originalsourceid>FETCH-LOGICAL-a166t-5872f055d2455d34e9ea0a3cedc70ef042454f2db347af0a6b321fc304c51b293</originalsourceid><addsrcrecordid>eNpNj7lOxDAYhC0EEssuBW_ghjLw-8hVQsSxUqSlyNbRH8fOochGdtJQ8Q68IU9CEAjRzHyaYkZDyBWDGwac3Y5vEljOE3NCNiyXWZSyLD79x-fkIoQRIMkhSzdkXy3W6mmwHUXb0hc3oXeWFj36TtPKow2vzs907r1bup6WAz9wOtgVPt8_VrzHedZ-0GFHzgxOQV_--pYcHx-q4jkqD0_74q6MkCXJHMVZyg3EccvlKkLqXCOgULpVKWgDcs2l4W0jZIoGMGkEZ0YJkCpmDc_Fllz_9KIK9egWb9e1mkH9_b_--y--AIFgTVg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Tunneling and Polaron Charge Transport through Li2O2 in Li–O2 Batteries</title><source>American Chemical Society Journals</source><creator>Luntz, A. C ; Viswanathan, V ; Voss, J ; Varley, J. B ; Nørskov, J. K ; Scheffler, R ; Speidel, A</creator><creatorcontrib>Luntz, A. C ; Viswanathan, V ; Voss, J ; Varley, J. B ; Nørskov, J. K ; Scheffler, R ; Speidel, A</creatorcontrib><description>We describe Li–O2 discharge experiments in a bulk electrolysis cell as a function of current density and temperature. In combination with a simple model, these imply that charge transport through Li2O2 in Li–O2 batteries at practical current densities is based principally on hole tunneling, with hole polaron conductivity playing a significant role near the end of very low current discharges and at temperatures greater than 30 °C. We also show that charge-transport limitations are much less significant during charging than those in discharge. A key element of the model that qualitatively explains all results is the alignment of the Li2O2 valence band maximum close to the electrochemical Fermi energy and how this alignment varies with overpotentials during discharge and charge. In fact, comparison of the model with the experiments allows determination of the alignment of the bands relative to the electrochemical Fermi level.</description><identifier>ISSN: 1948-7185</identifier><identifier>EISSN: 1948-7185</identifier><identifier>DOI: 10.1021/jz401926f</identifier><language>eng ; jpn</language><publisher>American Chemical Society</publisher><subject>Energy Conversion and Storage; Energy and Charge Transport</subject><ispartof>The journal of physical chemistry letters, 2013-10, Vol.4 (20), p.3494-3499</ispartof><rights>Copyright © 2013 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jz401926f$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jz401926f$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,27055,27903,27904,56716,56766</link.rule.ids></links><search><creatorcontrib>Luntz, A. C</creatorcontrib><creatorcontrib>Viswanathan, V</creatorcontrib><creatorcontrib>Voss, J</creatorcontrib><creatorcontrib>Varley, J. B</creatorcontrib><creatorcontrib>Nørskov, J. K</creatorcontrib><creatorcontrib>Scheffler, R</creatorcontrib><creatorcontrib>Speidel, A</creatorcontrib><title>Tunneling and Polaron Charge Transport through Li2O2 in Li–O2 Batteries</title><title>The journal of physical chemistry letters</title><addtitle>J. Phys. Chem. Lett</addtitle><description>We describe Li–O2 discharge experiments in a bulk electrolysis cell as a function of current density and temperature. In combination with a simple model, these imply that charge transport through Li2O2 in Li–O2 batteries at practical current densities is based principally on hole tunneling, with hole polaron conductivity playing a significant role near the end of very low current discharges and at temperatures greater than 30 °C. We also show that charge-transport limitations are much less significant during charging than those in discharge. A key element of the model that qualitatively explains all results is the alignment of the Li2O2 valence band maximum close to the electrochemical Fermi energy and how this alignment varies with overpotentials during discharge and charge. In fact, comparison of the model with the experiments allows determination of the alignment of the bands relative to the electrochemical Fermi level.</description><subject>Energy Conversion and Storage; Energy and Charge Transport</subject><issn>1948-7185</issn><issn>1948-7185</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpNj7lOxDAYhC0EEssuBW_ghjLw-8hVQsSxUqSlyNbRH8fOochGdtJQ8Q68IU9CEAjRzHyaYkZDyBWDGwac3Y5vEljOE3NCNiyXWZSyLD79x-fkIoQRIMkhSzdkXy3W6mmwHUXb0hc3oXeWFj36TtPKow2vzs907r1bup6WAz9wOtgVPt8_VrzHedZ-0GFHzgxOQV_--pYcHx-q4jkqD0_74q6MkCXJHMVZyg3EccvlKkLqXCOgULpVKWgDcs2l4W0jZIoGMGkEZ0YJkCpmDc_Fllz_9KIK9egWb9e1mkH9_b_--y--AIFgTVg</recordid><startdate>20131017</startdate><enddate>20131017</enddate><creator>Luntz, A. C</creator><creator>Viswanathan, V</creator><creator>Voss, J</creator><creator>Varley, J. B</creator><creator>Nørskov, J. K</creator><creator>Scheffler, R</creator><creator>Speidel, A</creator><general>American Chemical Society</general><scope/></search><sort><creationdate>20131017</creationdate><title>Tunneling and Polaron Charge Transport through Li2O2 in Li–O2 Batteries</title><author>Luntz, A. C ; Viswanathan, V ; Voss, J ; Varley, J. B ; Nørskov, J. K ; Scheffler, R ; Speidel, A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a166t-5872f055d2455d34e9ea0a3cedc70ef042454f2db347af0a6b321fc304c51b293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng ; jpn</language><creationdate>2013</creationdate><topic>Energy Conversion and Storage; Energy and Charge Transport</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luntz, A. C</creatorcontrib><creatorcontrib>Viswanathan, V</creatorcontrib><creatorcontrib>Voss, J</creatorcontrib><creatorcontrib>Varley, J. B</creatorcontrib><creatorcontrib>Nørskov, J. K</creatorcontrib><creatorcontrib>Scheffler, R</creatorcontrib><creatorcontrib>Speidel, A</creatorcontrib><jtitle>The journal of physical chemistry letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luntz, A. C</au><au>Viswanathan, V</au><au>Voss, J</au><au>Varley, J. B</au><au>Nørskov, J. K</au><au>Scheffler, R</au><au>Speidel, A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tunneling and Polaron Charge Transport through Li2O2 in Li–O2 Batteries</atitle><jtitle>The journal of physical chemistry letters</jtitle><addtitle>J. Phys. Chem. Lett</addtitle><date>2013-10-17</date><risdate>2013</risdate><volume>4</volume><issue>20</issue><spage>3494</spage><epage>3499</epage><pages>3494-3499</pages><issn>1948-7185</issn><eissn>1948-7185</eissn><abstract>We describe Li–O2 discharge experiments in a bulk electrolysis cell as a function of current density and temperature. In combination with a simple model, these imply that charge transport through Li2O2 in Li–O2 batteries at practical current densities is based principally on hole tunneling, with hole polaron conductivity playing a significant role near the end of very low current discharges and at temperatures greater than 30 °C. We also show that charge-transport limitations are much less significant during charging than those in discharge. A key element of the model that qualitatively explains all results is the alignment of the Li2O2 valence band maximum close to the electrochemical Fermi energy and how this alignment varies with overpotentials during discharge and charge. In fact, comparison of the model with the experiments allows determination of the alignment of the bands relative to the electrochemical Fermi level.</abstract><pub>American Chemical Society</pub><doi>10.1021/jz401926f</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1948-7185
ispartof The journal of physical chemistry letters, 2013-10, Vol.4 (20), p.3494-3499
issn 1948-7185
1948-7185
language eng ; jpn
recordid cdi_acs_journals_10_1021_jz401926f
source American Chemical Society Journals
subjects Energy Conversion and Storage
Energy and Charge Transport
title Tunneling and Polaron Charge Transport through Li2O2 in Li–O2 Batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T10%3A53%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tunneling%20and%20Polaron%20Charge%20Transport%20through%20Li2O2%20in%20Li%E2%80%93O2%20Batteries&rft.jtitle=The%20journal%20of%20physical%20chemistry%20letters&rft.au=Luntz,%20A.%20C&rft.date=2013-10-17&rft.volume=4&rft.issue=20&rft.spage=3494&rft.epage=3499&rft.pages=3494-3499&rft.issn=1948-7185&rft.eissn=1948-7185&rft_id=info:doi/10.1021/jz401926f&rft_dat=%3Cacs%3Ec022191948%3C/acs%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true