Tunneling and Polaron Charge Transport through Li2O2 in Li–O2 Batteries
We describe Li–O2 discharge experiments in a bulk electrolysis cell as a function of current density and temperature. In combination with a simple model, these imply that charge transport through Li2O2 in Li–O2 batteries at practical current densities is based principally on hole tunneling, with hol...
Gespeichert in:
Veröffentlicht in: | The journal of physical chemistry letters 2013-10, Vol.4 (20), p.3494-3499 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng ; jpn |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3499 |
---|---|
container_issue | 20 |
container_start_page | 3494 |
container_title | The journal of physical chemistry letters |
container_volume | 4 |
creator | Luntz, A. C Viswanathan, V Voss, J Varley, J. B Nørskov, J. K Scheffler, R Speidel, A |
description | We describe Li–O2 discharge experiments in a bulk electrolysis cell as a function of current density and temperature. In combination with a simple model, these imply that charge transport through Li2O2 in Li–O2 batteries at practical current densities is based principally on hole tunneling, with hole polaron conductivity playing a significant role near the end of very low current discharges and at temperatures greater than 30 °C. We also show that charge-transport limitations are much less significant during charging than those in discharge. A key element of the model that qualitatively explains all results is the alignment of the Li2O2 valence band maximum close to the electrochemical Fermi energy and how this alignment varies with overpotentials during discharge and charge. In fact, comparison of the model with the experiments allows determination of the alignment of the bands relative to the electrochemical Fermi level. |
doi_str_mv | 10.1021/jz401926f |
format | Article |
fullrecord | <record><control><sourceid>acs</sourceid><recordid>TN_cdi_acs_journals_10_1021_jz401926f</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c022191948</sourcerecordid><originalsourceid>FETCH-LOGICAL-a166t-5872f055d2455d34e9ea0a3cedc70ef042454f2db347af0a6b321fc304c51b293</originalsourceid><addsrcrecordid>eNpNj7lOxDAYhC0EEssuBW_ghjLw-8hVQsSxUqSlyNbRH8fOochGdtJQ8Q68IU9CEAjRzHyaYkZDyBWDGwac3Y5vEljOE3NCNiyXWZSyLD79x-fkIoQRIMkhSzdkXy3W6mmwHUXb0hc3oXeWFj36TtPKow2vzs907r1bup6WAz9wOtgVPt8_VrzHedZ-0GFHzgxOQV_--pYcHx-q4jkqD0_74q6MkCXJHMVZyg3EccvlKkLqXCOgULpVKWgDcs2l4W0jZIoGMGkEZ0YJkCpmDc_Fllz_9KIK9egWb9e1mkH9_b_--y--AIFgTVg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Tunneling and Polaron Charge Transport through Li2O2 in Li–O2 Batteries</title><source>American Chemical Society Journals</source><creator>Luntz, A. C ; Viswanathan, V ; Voss, J ; Varley, J. B ; Nørskov, J. K ; Scheffler, R ; Speidel, A</creator><creatorcontrib>Luntz, A. C ; Viswanathan, V ; Voss, J ; Varley, J. B ; Nørskov, J. K ; Scheffler, R ; Speidel, A</creatorcontrib><description>We describe Li–O2 discharge experiments in a bulk electrolysis cell as a function of current density and temperature. In combination with a simple model, these imply that charge transport through Li2O2 in Li–O2 batteries at practical current densities is based principally on hole tunneling, with hole polaron conductivity playing a significant role near the end of very low current discharges and at temperatures greater than 30 °C. We also show that charge-transport limitations are much less significant during charging than those in discharge. A key element of the model that qualitatively explains all results is the alignment of the Li2O2 valence band maximum close to the electrochemical Fermi energy and how this alignment varies with overpotentials during discharge and charge. In fact, comparison of the model with the experiments allows determination of the alignment of the bands relative to the electrochemical Fermi level.</description><identifier>ISSN: 1948-7185</identifier><identifier>EISSN: 1948-7185</identifier><identifier>DOI: 10.1021/jz401926f</identifier><language>eng ; jpn</language><publisher>American Chemical Society</publisher><subject>Energy Conversion and Storage; Energy and Charge Transport</subject><ispartof>The journal of physical chemistry letters, 2013-10, Vol.4 (20), p.3494-3499</ispartof><rights>Copyright © 2013 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jz401926f$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jz401926f$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,27055,27903,27904,56716,56766</link.rule.ids></links><search><creatorcontrib>Luntz, A. C</creatorcontrib><creatorcontrib>Viswanathan, V</creatorcontrib><creatorcontrib>Voss, J</creatorcontrib><creatorcontrib>Varley, J. B</creatorcontrib><creatorcontrib>Nørskov, J. K</creatorcontrib><creatorcontrib>Scheffler, R</creatorcontrib><creatorcontrib>Speidel, A</creatorcontrib><title>Tunneling and Polaron Charge Transport through Li2O2 in Li–O2 Batteries</title><title>The journal of physical chemistry letters</title><addtitle>J. Phys. Chem. Lett</addtitle><description>We describe Li–O2 discharge experiments in a bulk electrolysis cell as a function of current density and temperature. In combination with a simple model, these imply that charge transport through Li2O2 in Li–O2 batteries at practical current densities is based principally on hole tunneling, with hole polaron conductivity playing a significant role near the end of very low current discharges and at temperatures greater than 30 °C. We also show that charge-transport limitations are much less significant during charging than those in discharge. A key element of the model that qualitatively explains all results is the alignment of the Li2O2 valence band maximum close to the electrochemical Fermi energy and how this alignment varies with overpotentials during discharge and charge. In fact, comparison of the model with the experiments allows determination of the alignment of the bands relative to the electrochemical Fermi level.</description><subject>Energy Conversion and Storage; Energy and Charge Transport</subject><issn>1948-7185</issn><issn>1948-7185</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpNj7lOxDAYhC0EEssuBW_ghjLw-8hVQsSxUqSlyNbRH8fOochGdtJQ8Q68IU9CEAjRzHyaYkZDyBWDGwac3Y5vEljOE3NCNiyXWZSyLD79x-fkIoQRIMkhSzdkXy3W6mmwHUXb0hc3oXeWFj36TtPKow2vzs907r1bup6WAz9wOtgVPt8_VrzHedZ-0GFHzgxOQV_--pYcHx-q4jkqD0_74q6MkCXJHMVZyg3EccvlKkLqXCOgULpVKWgDcs2l4W0jZIoGMGkEZ0YJkCpmDc_Fllz_9KIK9egWb9e1mkH9_b_--y--AIFgTVg</recordid><startdate>20131017</startdate><enddate>20131017</enddate><creator>Luntz, A. C</creator><creator>Viswanathan, V</creator><creator>Voss, J</creator><creator>Varley, J. B</creator><creator>Nørskov, J. K</creator><creator>Scheffler, R</creator><creator>Speidel, A</creator><general>American Chemical Society</general><scope/></search><sort><creationdate>20131017</creationdate><title>Tunneling and Polaron Charge Transport through Li2O2 in Li–O2 Batteries</title><author>Luntz, A. C ; Viswanathan, V ; Voss, J ; Varley, J. B ; Nørskov, J. K ; Scheffler, R ; Speidel, A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a166t-5872f055d2455d34e9ea0a3cedc70ef042454f2db347af0a6b321fc304c51b293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng ; jpn</language><creationdate>2013</creationdate><topic>Energy Conversion and Storage; Energy and Charge Transport</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luntz, A. C</creatorcontrib><creatorcontrib>Viswanathan, V</creatorcontrib><creatorcontrib>Voss, J</creatorcontrib><creatorcontrib>Varley, J. B</creatorcontrib><creatorcontrib>Nørskov, J. K</creatorcontrib><creatorcontrib>Scheffler, R</creatorcontrib><creatorcontrib>Speidel, A</creatorcontrib><jtitle>The journal of physical chemistry letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luntz, A. C</au><au>Viswanathan, V</au><au>Voss, J</au><au>Varley, J. B</au><au>Nørskov, J. K</au><au>Scheffler, R</au><au>Speidel, A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tunneling and Polaron Charge Transport through Li2O2 in Li–O2 Batteries</atitle><jtitle>The journal of physical chemistry letters</jtitle><addtitle>J. Phys. Chem. Lett</addtitle><date>2013-10-17</date><risdate>2013</risdate><volume>4</volume><issue>20</issue><spage>3494</spage><epage>3499</epage><pages>3494-3499</pages><issn>1948-7185</issn><eissn>1948-7185</eissn><abstract>We describe Li–O2 discharge experiments in a bulk electrolysis cell as a function of current density and temperature. In combination with a simple model, these imply that charge transport through Li2O2 in Li–O2 batteries at practical current densities is based principally on hole tunneling, with hole polaron conductivity playing a significant role near the end of very low current discharges and at temperatures greater than 30 °C. We also show that charge-transport limitations are much less significant during charging than those in discharge. A key element of the model that qualitatively explains all results is the alignment of the Li2O2 valence band maximum close to the electrochemical Fermi energy and how this alignment varies with overpotentials during discharge and charge. In fact, comparison of the model with the experiments allows determination of the alignment of the bands relative to the electrochemical Fermi level.</abstract><pub>American Chemical Society</pub><doi>10.1021/jz401926f</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1948-7185 |
ispartof | The journal of physical chemistry letters, 2013-10, Vol.4 (20), p.3494-3499 |
issn | 1948-7185 1948-7185 |
language | eng ; jpn |
recordid | cdi_acs_journals_10_1021_jz401926f |
source | American Chemical Society Journals |
subjects | Energy Conversion and Storage Energy and Charge Transport |
title | Tunneling and Polaron Charge Transport through Li2O2 in Li–O2 Batteries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T10%3A53%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tunneling%20and%20Polaron%20Charge%20Transport%20through%20Li2O2%20in%20Li%E2%80%93O2%20Batteries&rft.jtitle=The%20journal%20of%20physical%20chemistry%20letters&rft.au=Luntz,%20A.%20C&rft.date=2013-10-17&rft.volume=4&rft.issue=20&rft.spage=3494&rft.epage=3499&rft.pages=3494-3499&rft.issn=1948-7185&rft.eissn=1948-7185&rft_id=info:doi/10.1021/jz401926f&rft_dat=%3Cacs%3Ec022191948%3C/acs%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |