ESR and 1H-,19F-ENDOR/TRIPLE Study of Fluorinated Diphenylnitroxides as Synthetic Bus Spin-Qubit Radicals with Client Qubits in Solution
Electron and nuclear spins as quantum bits (qubits) have been the focus of current issues in quantum information science/technology and related fields. From the viewpoint of chemistry, synthetic spin qubits are emerging. Diphenylnitroxide (DPNO) and its novel fluorine-substituted radicals are charac...
Gespeichert in:
Veröffentlicht in: | The journal of physical chemistry letters 2011-03, Vol.2 (5), p.449-453 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Electron and nuclear spins as quantum bits (qubits) have been the focus of current issues in quantum information science/technology and related fields. From the viewpoint of chemistry, synthetic spin qubits are emerging. Diphenylnitroxide (DPNO) and its novel fluorine-substituted radicals are characterized as synthetic electron bus spin-qubits by continuous-wave ESR and 1H-,19F-ENDOR/TRIPLE spectroscopy in solution and by DFT calculations. The partially fluorinated DPNOs have been synthesized to illustrate that they are candidates for the synthetic bus spin-qubits with well-defined client qubits. The fluorinated DPNOs undergo spin delocalization, dominating the robust spin polarization in the π-conjugation of phenyl rings, serving to increase the number of distinguishable client qubits from three to six. |
---|---|
ISSN: | 1948-7185 1948-7185 |
DOI: | 10.1021/jz101650z |