Poisoning of Pt3Co Electrodes: A Combined Experimental and DFT Study

Density functional theory calculations and rotating ring disk electrode experiments were performed to investigate the poisoning effects of sulfur species on the catalytic properties of elemental Pt and Pt3Co alloy surfaces. Experimental data indicates that there is a positive shift in the oxidation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry. C 2010-05, Vol.114 (17), p.7822-7830
Hauptverfasser: Pillay, D, Johannes, M. D, Garsany, Y, Swider-Lyons, K. E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7830
container_issue 17
container_start_page 7822
container_title Journal of physical chemistry. C
container_volume 114
creator Pillay, D
Johannes, M. D
Garsany, Y
Swider-Lyons, K. E
description Density functional theory calculations and rotating ring disk electrode experiments were performed to investigate the poisoning effects of sulfur species on the catalytic properties of elemental Pt and Pt3Co alloy surfaces. Experimental data indicates that there is a positive shift in the oxidation overpotential of Pt3Co accompanied by less oxidation/reduction cycles necessary in rotating ring disk electrode experiments (RRDE) in order to remove most of the sulfur species. Our theoretical calculations suggest that OH clustering is substantially reduced on the Pt3C(111) surface irrespective of the presence of Co atoms versus Pt(111). While the presence of Co does enhance adsorption of electronegative atoms/molecules on neighboring Pt sites, once Co atoms are oxidized or a Co−S bond is formed, they serve as a pin for the poison and subsequently reduce bonding of additional electronegative atoms/molecules at nearby sites. Additionally, our calculations indicate that a combination of effects due to less Pt3Co surface oxidation, more weakly adsorbed S species, and lower reaction barriers for SO2 oxidation on Pt3Co versus Pt subsequently leads to easier cleaning of the surface.
doi_str_mv 10.1021/jp906778k
format Article
fullrecord <record><control><sourceid>acs</sourceid><recordid>TN_cdi_acs_journals_10_1021_jp906778k</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a207041110</sourcerecordid><originalsourceid>FETCH-LOGICAL-a185t-7506a60d6911dc9ff9e23de7912067cb8f2277ebb8ea6462cb536f4bd6ccad713</originalsourceid><addsrcrecordid>eNo9j09LwzAchoMoOKcHv0EuHqv5JU3SeBtdp8LAgfNc8ldau2Q0Hei3d6Ls9L6n93kfhG6B3AOh8NDvFRFSVp9naAaK0UKWnJ-feikv0VXOPSGcEWAztNykLqfYxQ-cAt5MrE64GbydxuR8fsQLXKed6aJ3uPna-7Hb-TjpAevo8HK1xW_TwX1fo4ugh-xv_nOO3lfNtn4u1q9PL_ViXWio-FRIToQWxAkF4KwKQXnKnJcK6PGzNVWgVEpvTOW1KAW1hjMRSuOEtdpJYHN097erbW77dBjjkdYCaX_V25M6-wH8d0rb</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Poisoning of Pt3Co Electrodes: A Combined Experimental and DFT Study</title><source>ACS Publications</source><creator>Pillay, D ; Johannes, M. D ; Garsany, Y ; Swider-Lyons, K. E</creator><creatorcontrib>Pillay, D ; Johannes, M. D ; Garsany, Y ; Swider-Lyons, K. E</creatorcontrib><description>Density functional theory calculations and rotating ring disk electrode experiments were performed to investigate the poisoning effects of sulfur species on the catalytic properties of elemental Pt and Pt3Co alloy surfaces. Experimental data indicates that there is a positive shift in the oxidation overpotential of Pt3Co accompanied by less oxidation/reduction cycles necessary in rotating ring disk electrode experiments (RRDE) in order to remove most of the sulfur species. Our theoretical calculations suggest that OH clustering is substantially reduced on the Pt3C(111) surface irrespective of the presence of Co atoms versus Pt(111). While the presence of Co does enhance adsorption of electronegative atoms/molecules on neighboring Pt sites, once Co atoms are oxidized or a Co−S bond is formed, they serve as a pin for the poison and subsequently reduce bonding of additional electronegative atoms/molecules at nearby sites. Additionally, our calculations indicate that a combination of effects due to less Pt3Co surface oxidation, more weakly adsorbed S species, and lower reaction barriers for SO2 oxidation on Pt3Co versus Pt subsequently leads to easier cleaning of the surface.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/jp906778k</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>C: Surfaces, Interfaces, Catalysis</subject><ispartof>Journal of physical chemistry. C, 2010-05, Vol.114 (17), p.7822-7830</ispartof><rights>Copyright © 2010 U.S. Government</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jp906778k$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jp906778k$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Pillay, D</creatorcontrib><creatorcontrib>Johannes, M. D</creatorcontrib><creatorcontrib>Garsany, Y</creatorcontrib><creatorcontrib>Swider-Lyons, K. E</creatorcontrib><title>Poisoning of Pt3Co Electrodes: A Combined Experimental and DFT Study</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>Density functional theory calculations and rotating ring disk electrode experiments were performed to investigate the poisoning effects of sulfur species on the catalytic properties of elemental Pt and Pt3Co alloy surfaces. Experimental data indicates that there is a positive shift in the oxidation overpotential of Pt3Co accompanied by less oxidation/reduction cycles necessary in rotating ring disk electrode experiments (RRDE) in order to remove most of the sulfur species. Our theoretical calculations suggest that OH clustering is substantially reduced on the Pt3C(111) surface irrespective of the presence of Co atoms versus Pt(111). While the presence of Co does enhance adsorption of electronegative atoms/molecules on neighboring Pt sites, once Co atoms are oxidized or a Co−S bond is formed, they serve as a pin for the poison and subsequently reduce bonding of additional electronegative atoms/molecules at nearby sites. Additionally, our calculations indicate that a combination of effects due to less Pt3Co surface oxidation, more weakly adsorbed S species, and lower reaction barriers for SO2 oxidation on Pt3Co versus Pt subsequently leads to easier cleaning of the surface.</description><subject>C: Surfaces, Interfaces, Catalysis</subject><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNo9j09LwzAchoMoOKcHv0EuHqv5JU3SeBtdp8LAgfNc8ldau2Q0Hei3d6Ls9L6n93kfhG6B3AOh8NDvFRFSVp9naAaK0UKWnJ-feikv0VXOPSGcEWAztNykLqfYxQ-cAt5MrE64GbydxuR8fsQLXKed6aJ3uPna-7Hb-TjpAevo8HK1xW_TwX1fo4ugh-xv_nOO3lfNtn4u1q9PL_ViXWio-FRIToQWxAkF4KwKQXnKnJcK6PGzNVWgVEpvTOW1KAW1hjMRSuOEtdpJYHN097erbW77dBjjkdYCaX_V25M6-wH8d0rb</recordid><startdate>20100506</startdate><enddate>20100506</enddate><creator>Pillay, D</creator><creator>Johannes, M. D</creator><creator>Garsany, Y</creator><creator>Swider-Lyons, K. E</creator><general>American Chemical Society</general><scope/></search><sort><creationdate>20100506</creationdate><title>Poisoning of Pt3Co Electrodes: A Combined Experimental and DFT Study</title><author>Pillay, D ; Johannes, M. D ; Garsany, Y ; Swider-Lyons, K. E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a185t-7506a60d6911dc9ff9e23de7912067cb8f2277ebb8ea6462cb536f4bd6ccad713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>C: Surfaces, Interfaces, Catalysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pillay, D</creatorcontrib><creatorcontrib>Johannes, M. D</creatorcontrib><creatorcontrib>Garsany, Y</creatorcontrib><creatorcontrib>Swider-Lyons, K. E</creatorcontrib><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pillay, D</au><au>Johannes, M. D</au><au>Garsany, Y</au><au>Swider-Lyons, K. E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Poisoning of Pt3Co Electrodes: A Combined Experimental and DFT Study</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2010-05-06</date><risdate>2010</risdate><volume>114</volume><issue>17</issue><spage>7822</spage><epage>7830</epage><pages>7822-7830</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>Density functional theory calculations and rotating ring disk electrode experiments were performed to investigate the poisoning effects of sulfur species on the catalytic properties of elemental Pt and Pt3Co alloy surfaces. Experimental data indicates that there is a positive shift in the oxidation overpotential of Pt3Co accompanied by less oxidation/reduction cycles necessary in rotating ring disk electrode experiments (RRDE) in order to remove most of the sulfur species. Our theoretical calculations suggest that OH clustering is substantially reduced on the Pt3C(111) surface irrespective of the presence of Co atoms versus Pt(111). While the presence of Co does enhance adsorption of electronegative atoms/molecules on neighboring Pt sites, once Co atoms are oxidized or a Co−S bond is formed, they serve as a pin for the poison and subsequently reduce bonding of additional electronegative atoms/molecules at nearby sites. Additionally, our calculations indicate that a combination of effects due to less Pt3Co surface oxidation, more weakly adsorbed S species, and lower reaction barriers for SO2 oxidation on Pt3Co versus Pt subsequently leads to easier cleaning of the surface.</abstract><pub>American Chemical Society</pub><doi>10.1021/jp906778k</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1932-7447
ispartof Journal of physical chemistry. C, 2010-05, Vol.114 (17), p.7822-7830
issn 1932-7447
1932-7455
language eng
recordid cdi_acs_journals_10_1021_jp906778k
source ACS Publications
subjects C: Surfaces, Interfaces, Catalysis
title Poisoning of Pt3Co Electrodes: A Combined Experimental and DFT Study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T18%3A03%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Poisoning%20of%20Pt3Co%20Electrodes:%20A%20Combined%20Experimental%20and%20DFT%20Study&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Pillay,%20D&rft.date=2010-05-06&rft.volume=114&rft.issue=17&rft.spage=7822&rft.epage=7830&rft.pages=7822-7830&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/jp906778k&rft_dat=%3Cacs%3Ea207041110%3C/acs%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true