Water Deprotonation via Oxo-Bridge Hydroxylation and 18O‑Exchange in Free Tetra-Manganese Oxide Clusters

One of the fundamental biological reactions, the catalytically activated water-splitting, takes place at an inorganic tetra-manganese monocalcium penta-oxygen (Mn4CaO5) cluster which together with its protein ligands forms the oxygen evolution complex (OEC) of the membrane-bound pigment–protein phot...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry. C 2015-01
Hauptverfasser: Lang, Sandra M, Fleischer, Irene, Bernhardt, Thorsten M, Barnett, Robert N, Landman, Uzi
Format: Artikel
Sprache:eng ; jpn
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Journal of physical chemistry. C
container_volume
creator Lang, Sandra M
Fleischer, Irene
Bernhardt, Thorsten M
Barnett, Robert N
Landman, Uzi
description One of the fundamental biological reactions, the catalytically activated water-splitting, takes place at an inorganic tetra-manganese monocalcium penta-oxygen (Mn4CaO5) cluster which together with its protein ligands forms the oxygen evolution complex (OEC) of the membrane-bound pigment–protein photosystem II (PSII) of plants, algae, and cyanobacteria. In the first step of a new hierarchical approach to probe fundamental concepts of the water-splitting reactions, we present the gas-phase preparation of an isolated tetra-manganese oxide cluster ion, Mn4O4 +, as a simplified model of the OEC. Reactivity studies with D2 16O and H2 18O in a gas-phase ion trap experiment reveal the exchange of the oxygen atoms of the cluster with water oxygen atoms. This provides direct experimental evidence for the ability of Mn4O4 + to dissociate water via hydroxylation of the oxo-bridges. The rate of oxygen exchange in the free cluster agrees well with the conversion rate of substrate water to O2 in photosystem II, thus supporting the involvement of bridging oxygen atoms in this process. First-principles spin density functional theory calculations reveal the molecular mechanism of the water deprotonation and oxo-bridge exchange.
doi_str_mv 10.1021/jp5106532
format Article
fullrecord <record><control><sourceid>acs</sourceid><recordid>TN_cdi_acs_journals_10_1021_jp5106532</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a669449629</sourcerecordid><originalsourceid>FETCH-LOGICAL-a1312-16a4499d4925953f3b751203b311d2162a3c22296e23bcdd8e01b945ce9e03f03</originalsourceid><addsrcrecordid>eNo9ULFOwzAUtBBIlMLAH3hhDPj5xUk9QmkpUlGWIsbIiV8gUeRUdorSjV_gF_kSgoo63enudCcdY9cgbkFIuGu2CkSiUJ6wCWiUURordXrkcXrOLkJohFAoACeseTM9ef5IW9_1nTN93Tn-WRueDV304Gv7Tny1t74b9u3BNM5ymGU_X9-LofwwbgzUji89Ed9Q7030MmrGUaCxo7bE5-0ujBvhkp1Vpg109Y9T9rpcbOaraJ09Pc_v15EBBBlBYuJYaxtrqbTCCotUgRRYIICVkEiDpZRSJySxKK2dkYBCx6okTQIrgVN2c-g1ZcibbufduJaDyP8Oyo8H4S-nNlg9</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Water Deprotonation via Oxo-Bridge Hydroxylation and 18O‑Exchange in Free Tetra-Manganese Oxide Clusters</title><source>American Chemical Society Journals</source><creator>Lang, Sandra M ; Fleischer, Irene ; Bernhardt, Thorsten M ; Barnett, Robert N ; Landman, Uzi</creator><creatorcontrib>Lang, Sandra M ; Fleischer, Irene ; Bernhardt, Thorsten M ; Barnett, Robert N ; Landman, Uzi</creatorcontrib><description>One of the fundamental biological reactions, the catalytically activated water-splitting, takes place at an inorganic tetra-manganese monocalcium penta-oxygen (Mn4CaO5) cluster which together with its protein ligands forms the oxygen evolution complex (OEC) of the membrane-bound pigment–protein photosystem II (PSII) of plants, algae, and cyanobacteria. In the first step of a new hierarchical approach to probe fundamental concepts of the water-splitting reactions, we present the gas-phase preparation of an isolated tetra-manganese oxide cluster ion, Mn4O4 +, as a simplified model of the OEC. Reactivity studies with D2 16O and H2 18O in a gas-phase ion trap experiment reveal the exchange of the oxygen atoms of the cluster with water oxygen atoms. This provides direct experimental evidence for the ability of Mn4O4 + to dissociate water via hydroxylation of the oxo-bridges. The rate of oxygen exchange in the free cluster agrees well with the conversion rate of substrate water to O2 in photosystem II, thus supporting the involvement of bridging oxygen atoms in this process. First-principles spin density functional theory calculations reveal the molecular mechanism of the water deprotonation and oxo-bridge exchange.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/jp5106532</identifier><language>eng ; jpn</language><publisher>American Chemical Society</publisher><ispartof>Journal of physical chemistry. C, 2015-01</ispartof><rights>Copyright © American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jp5106532$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jp5106532$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Lang, Sandra M</creatorcontrib><creatorcontrib>Fleischer, Irene</creatorcontrib><creatorcontrib>Bernhardt, Thorsten M</creatorcontrib><creatorcontrib>Barnett, Robert N</creatorcontrib><creatorcontrib>Landman, Uzi</creatorcontrib><title>Water Deprotonation via Oxo-Bridge Hydroxylation and 18O‑Exchange in Free Tetra-Manganese Oxide Clusters</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>One of the fundamental biological reactions, the catalytically activated water-splitting, takes place at an inorganic tetra-manganese monocalcium penta-oxygen (Mn4CaO5) cluster which together with its protein ligands forms the oxygen evolution complex (OEC) of the membrane-bound pigment–protein photosystem II (PSII) of plants, algae, and cyanobacteria. In the first step of a new hierarchical approach to probe fundamental concepts of the water-splitting reactions, we present the gas-phase preparation of an isolated tetra-manganese oxide cluster ion, Mn4O4 +, as a simplified model of the OEC. Reactivity studies with D2 16O and H2 18O in a gas-phase ion trap experiment reveal the exchange of the oxygen atoms of the cluster with water oxygen atoms. This provides direct experimental evidence for the ability of Mn4O4 + to dissociate water via hydroxylation of the oxo-bridges. The rate of oxygen exchange in the free cluster agrees well with the conversion rate of substrate water to O2 in photosystem II, thus supporting the involvement of bridging oxygen atoms in this process. First-principles spin density functional theory calculations reveal the molecular mechanism of the water deprotonation and oxo-bridge exchange.</description><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNo9ULFOwzAUtBBIlMLAH3hhDPj5xUk9QmkpUlGWIsbIiV8gUeRUdorSjV_gF_kSgoo63enudCcdY9cgbkFIuGu2CkSiUJ6wCWiUURordXrkcXrOLkJohFAoACeseTM9ef5IW9_1nTN93Tn-WRueDV304Gv7Tny1t74b9u3BNM5ymGU_X9-LofwwbgzUji89Ed9Q7030MmrGUaCxo7bE5-0ujBvhkp1Vpg109Y9T9rpcbOaraJ09Pc_v15EBBBlBYuJYaxtrqbTCCotUgRRYIICVkEiDpZRSJySxKK2dkYBCx6okTQIrgVN2c-g1ZcibbufduJaDyP8Oyo8H4S-nNlg9</recordid><startdate>20150105</startdate><enddate>20150105</enddate><creator>Lang, Sandra M</creator><creator>Fleischer, Irene</creator><creator>Bernhardt, Thorsten M</creator><creator>Barnett, Robert N</creator><creator>Landman, Uzi</creator><general>American Chemical Society</general><scope/></search><sort><creationdate>20150105</creationdate><title>Water Deprotonation via Oxo-Bridge Hydroxylation and 18O‑Exchange in Free Tetra-Manganese Oxide Clusters</title><author>Lang, Sandra M ; Fleischer, Irene ; Bernhardt, Thorsten M ; Barnett, Robert N ; Landman, Uzi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a1312-16a4499d4925953f3b751203b311d2162a3c22296e23bcdd8e01b945ce9e03f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng ; jpn</language><creationdate>2015</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lang, Sandra M</creatorcontrib><creatorcontrib>Fleischer, Irene</creatorcontrib><creatorcontrib>Bernhardt, Thorsten M</creatorcontrib><creatorcontrib>Barnett, Robert N</creatorcontrib><creatorcontrib>Landman, Uzi</creatorcontrib><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lang, Sandra M</au><au>Fleischer, Irene</au><au>Bernhardt, Thorsten M</au><au>Barnett, Robert N</au><au>Landman, Uzi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Water Deprotonation via Oxo-Bridge Hydroxylation and 18O‑Exchange in Free Tetra-Manganese Oxide Clusters</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2015-01-05</date><risdate>2015</risdate><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>One of the fundamental biological reactions, the catalytically activated water-splitting, takes place at an inorganic tetra-manganese monocalcium penta-oxygen (Mn4CaO5) cluster which together with its protein ligands forms the oxygen evolution complex (OEC) of the membrane-bound pigment–protein photosystem II (PSII) of plants, algae, and cyanobacteria. In the first step of a new hierarchical approach to probe fundamental concepts of the water-splitting reactions, we present the gas-phase preparation of an isolated tetra-manganese oxide cluster ion, Mn4O4 +, as a simplified model of the OEC. Reactivity studies with D2 16O and H2 18O in a gas-phase ion trap experiment reveal the exchange of the oxygen atoms of the cluster with water oxygen atoms. This provides direct experimental evidence for the ability of Mn4O4 + to dissociate water via hydroxylation of the oxo-bridges. The rate of oxygen exchange in the free cluster agrees well with the conversion rate of substrate water to O2 in photosystem II, thus supporting the involvement of bridging oxygen atoms in this process. First-principles spin density functional theory calculations reveal the molecular mechanism of the water deprotonation and oxo-bridge exchange.</abstract><pub>American Chemical Society</pub><doi>10.1021/jp5106532</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-7447
ispartof Journal of physical chemistry. C, 2015-01
issn 1932-7447
1932-7455
language eng ; jpn
recordid cdi_acs_journals_10_1021_jp5106532
source American Chemical Society Journals
title Water Deprotonation via Oxo-Bridge Hydroxylation and 18O‑Exchange in Free Tetra-Manganese Oxide Clusters
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T00%3A51%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Water%20Deprotonation%20via%20Oxo-Bridge%20Hydroxylation%20and%2018O%E2%80%91Exchange%20in%20Free%20Tetra-Manganese%20Oxide%20Clusters&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Lang,%20Sandra%20M&rft.date=2015-01-05&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/jp5106532&rft_dat=%3Cacs%3Ea669449629%3C/acs%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true