Chemically Tunable Ionic Liquids with Aprotic Heterocyclic Anion (AHA) for CO2 Capture

Ionic liquids (ILs) with aprotic heterocyclic anions, or AHAs, can bind CO2 with reaction enthalpies that are suitable for gas separations and without suffering large viscosity increases. In the present work, we have synthesized ILs bearing an alkyl-phosphonium cation with indazolide, imidazolide, p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. B 2014-05, Vol.118 (21), p.5740-5751
Hauptverfasser: Seo, Samuel, Quiroz-Guzman, Mauricio, DeSilva, M. Aruni, Lee, Tae Bum, Huang, Yong, Goodrich, Brett F, Schneider, William F, Brennecke, Joan F
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5751
container_issue 21
container_start_page 5740
container_title The journal of physical chemistry. B
container_volume 118
creator Seo, Samuel
Quiroz-Guzman, Mauricio
DeSilva, M. Aruni
Lee, Tae Bum
Huang, Yong
Goodrich, Brett F
Schneider, William F
Brennecke, Joan F
description Ionic liquids (ILs) with aprotic heterocyclic anions, or AHAs, can bind CO2 with reaction enthalpies that are suitable for gas separations and without suffering large viscosity increases. In the present work, we have synthesized ILs bearing an alkyl-phosphonium cation with indazolide, imidazolide, pyrrolide, pyrazolide and triazolide-based anions that span a wide range of predicted reaction enthalpies with CO2. Each AHA-based IL was characterized by NMR spectroscopy and their physical properties (viscosity, glass transition, and thermal decomposition temperature) determined. In addition, the influence of substituent groups on the reaction enthalpy was investigated by measuring the CO2 solubility in each IL at pressures between 0 and 1 bar at 22 °C using a volumetric method. The isotherm-derived enthalpies range between −37 and −54 kJ mol–1 of CO2, and these values are in good agreement with computed enthalpies of gas-phase IL-CO2 reaction products from molecular electronic structure calculations. The AHA ILs show no substantial increase in viscosity when fully saturated with CO2 at 1 bar. Phase splitting and compositional analysis of one of the IL/H2O and IL/H2O/CO2 systems conclude that protonation of the 2-cyanopyrrolide anion is improbable, and this result was confirmed by the equimolar CO2 absorption in the presence of water. Taking advantage of the tunable binding energy and absence of viscosity increase after the reaction with CO2, AHA ILs are promising candidates for efficient and environmental-friendly absorbents in postcombustion CO2 capture.
doi_str_mv 10.1021/jp502279w
format Article
fullrecord <record><control><sourceid>acs</sourceid><recordid>TN_cdi_acs_journals_10_1021_jp502279w</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a319627675</sourcerecordid><originalsourceid>FETCH-LOGICAL-a185t-2e70cb9e3e600e82463cceeacc24ef0c9369a93abcd960aab5f26f159adff5c93</originalsourceid><addsrcrecordid>eNo9UE1LxDAQDaLgunrwH-Qi6KE6STdpcyxF7UJhL6vXkk4nbEttaj9Y9t9bcfHweF8wA4-xewHPAqR4aXoFUkbmeMFWQkkIFkSXZ60F6Gt2M44NgFQy1iv2mR7oq0bbtie-nztbtsS3vquR5_X3XFcjP9bTgSf94KclzGiiweMJ28UkXe07_phkyRN3fuDpTvLU9tM80C27crYd6e7Ma_bx9rpPsyDfvW_TJA-siNUUSIoAS0MhaQCK5UaHiEQWUW7IAZpQG2tCW2JlNFhbKie1E8rYyjm11Gv28HfX4lg0fh665VshoPgdo_gfI_wBl9pR-w</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Chemically Tunable Ionic Liquids with Aprotic Heterocyclic Anion (AHA) for CO2 Capture</title><source>ACS Publications</source><creator>Seo, Samuel ; Quiroz-Guzman, Mauricio ; DeSilva, M. Aruni ; Lee, Tae Bum ; Huang, Yong ; Goodrich, Brett F ; Schneider, William F ; Brennecke, Joan F</creator><creatorcontrib>Seo, Samuel ; Quiroz-Guzman, Mauricio ; DeSilva, M. Aruni ; Lee, Tae Bum ; Huang, Yong ; Goodrich, Brett F ; Schneider, William F ; Brennecke, Joan F</creatorcontrib><description>Ionic liquids (ILs) with aprotic heterocyclic anions, or AHAs, can bind CO2 with reaction enthalpies that are suitable for gas separations and without suffering large viscosity increases. In the present work, we have synthesized ILs bearing an alkyl-phosphonium cation with indazolide, imidazolide, pyrrolide, pyrazolide and triazolide-based anions that span a wide range of predicted reaction enthalpies with CO2. Each AHA-based IL was characterized by NMR spectroscopy and their physical properties (viscosity, glass transition, and thermal decomposition temperature) determined. In addition, the influence of substituent groups on the reaction enthalpy was investigated by measuring the CO2 solubility in each IL at pressures between 0 and 1 bar at 22 °C using a volumetric method. The isotherm-derived enthalpies range between −37 and −54 kJ mol–1 of CO2, and these values are in good agreement with computed enthalpies of gas-phase IL-CO2 reaction products from molecular electronic structure calculations. The AHA ILs show no substantial increase in viscosity when fully saturated with CO2 at 1 bar. Phase splitting and compositional analysis of one of the IL/H2O and IL/H2O/CO2 systems conclude that protonation of the 2-cyanopyrrolide anion is improbable, and this result was confirmed by the equimolar CO2 absorption in the presence of water. Taking advantage of the tunable binding energy and absence of viscosity increase after the reaction with CO2, AHA ILs are promising candidates for efficient and environmental-friendly absorbents in postcombustion CO2 capture.</description><identifier>ISSN: 1520-6106</identifier><identifier>EISSN: 1520-5207</identifier><identifier>DOI: 10.1021/jp502279w</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>The journal of physical chemistry. B, 2014-05, Vol.118 (21), p.5740-5751</ispartof><rights>Copyright © 2014 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jp502279w$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jp502279w$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Seo, Samuel</creatorcontrib><creatorcontrib>Quiroz-Guzman, Mauricio</creatorcontrib><creatorcontrib>DeSilva, M. Aruni</creatorcontrib><creatorcontrib>Lee, Tae Bum</creatorcontrib><creatorcontrib>Huang, Yong</creatorcontrib><creatorcontrib>Goodrich, Brett F</creatorcontrib><creatorcontrib>Schneider, William F</creatorcontrib><creatorcontrib>Brennecke, Joan F</creatorcontrib><title>Chemically Tunable Ionic Liquids with Aprotic Heterocyclic Anion (AHA) for CO2 Capture</title><title>The journal of physical chemistry. B</title><addtitle>J. Phys. Chem. B</addtitle><description>Ionic liquids (ILs) with aprotic heterocyclic anions, or AHAs, can bind CO2 with reaction enthalpies that are suitable for gas separations and without suffering large viscosity increases. In the present work, we have synthesized ILs bearing an alkyl-phosphonium cation with indazolide, imidazolide, pyrrolide, pyrazolide and triazolide-based anions that span a wide range of predicted reaction enthalpies with CO2. Each AHA-based IL was characterized by NMR spectroscopy and their physical properties (viscosity, glass transition, and thermal decomposition temperature) determined. In addition, the influence of substituent groups on the reaction enthalpy was investigated by measuring the CO2 solubility in each IL at pressures between 0 and 1 bar at 22 °C using a volumetric method. The isotherm-derived enthalpies range between −37 and −54 kJ mol–1 of CO2, and these values are in good agreement with computed enthalpies of gas-phase IL-CO2 reaction products from molecular electronic structure calculations. The AHA ILs show no substantial increase in viscosity when fully saturated with CO2 at 1 bar. Phase splitting and compositional analysis of one of the IL/H2O and IL/H2O/CO2 systems conclude that protonation of the 2-cyanopyrrolide anion is improbable, and this result was confirmed by the equimolar CO2 absorption in the presence of water. Taking advantage of the tunable binding energy and absence of viscosity increase after the reaction with CO2, AHA ILs are promising candidates for efficient and environmental-friendly absorbents in postcombustion CO2 capture.</description><issn>1520-6106</issn><issn>1520-5207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNo9UE1LxDAQDaLgunrwH-Qi6KE6STdpcyxF7UJhL6vXkk4nbEttaj9Y9t9bcfHweF8wA4-xewHPAqR4aXoFUkbmeMFWQkkIFkSXZ60F6Gt2M44NgFQy1iv2mR7oq0bbtie-nztbtsS3vquR5_X3XFcjP9bTgSf94KclzGiiweMJ28UkXe07_phkyRN3fuDpTvLU9tM80C27crYd6e7Ma_bx9rpPsyDfvW_TJA-siNUUSIoAS0MhaQCK5UaHiEQWUW7IAZpQG2tCW2JlNFhbKie1E8rYyjm11Gv28HfX4lg0fh665VshoPgdo_gfI_wBl9pR-w</recordid><startdate>20140529</startdate><enddate>20140529</enddate><creator>Seo, Samuel</creator><creator>Quiroz-Guzman, Mauricio</creator><creator>DeSilva, M. Aruni</creator><creator>Lee, Tae Bum</creator><creator>Huang, Yong</creator><creator>Goodrich, Brett F</creator><creator>Schneider, William F</creator><creator>Brennecke, Joan F</creator><general>American Chemical Society</general><scope/></search><sort><creationdate>20140529</creationdate><title>Chemically Tunable Ionic Liquids with Aprotic Heterocyclic Anion (AHA) for CO2 Capture</title><author>Seo, Samuel ; Quiroz-Guzman, Mauricio ; DeSilva, M. Aruni ; Lee, Tae Bum ; Huang, Yong ; Goodrich, Brett F ; Schneider, William F ; Brennecke, Joan F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a185t-2e70cb9e3e600e82463cceeacc24ef0c9369a93abcd960aab5f26f159adff5c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Seo, Samuel</creatorcontrib><creatorcontrib>Quiroz-Guzman, Mauricio</creatorcontrib><creatorcontrib>DeSilva, M. Aruni</creatorcontrib><creatorcontrib>Lee, Tae Bum</creatorcontrib><creatorcontrib>Huang, Yong</creatorcontrib><creatorcontrib>Goodrich, Brett F</creatorcontrib><creatorcontrib>Schneider, William F</creatorcontrib><creatorcontrib>Brennecke, Joan F</creatorcontrib><jtitle>The journal of physical chemistry. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Seo, Samuel</au><au>Quiroz-Guzman, Mauricio</au><au>DeSilva, M. Aruni</au><au>Lee, Tae Bum</au><au>Huang, Yong</au><au>Goodrich, Brett F</au><au>Schneider, William F</au><au>Brennecke, Joan F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chemically Tunable Ionic Liquids with Aprotic Heterocyclic Anion (AHA) for CO2 Capture</atitle><jtitle>The journal of physical chemistry. B</jtitle><addtitle>J. Phys. Chem. B</addtitle><date>2014-05-29</date><risdate>2014</risdate><volume>118</volume><issue>21</issue><spage>5740</spage><epage>5751</epage><pages>5740-5751</pages><issn>1520-6106</issn><eissn>1520-5207</eissn><abstract>Ionic liquids (ILs) with aprotic heterocyclic anions, or AHAs, can bind CO2 with reaction enthalpies that are suitable for gas separations and without suffering large viscosity increases. In the present work, we have synthesized ILs bearing an alkyl-phosphonium cation with indazolide, imidazolide, pyrrolide, pyrazolide and triazolide-based anions that span a wide range of predicted reaction enthalpies with CO2. Each AHA-based IL was characterized by NMR spectroscopy and their physical properties (viscosity, glass transition, and thermal decomposition temperature) determined. In addition, the influence of substituent groups on the reaction enthalpy was investigated by measuring the CO2 solubility in each IL at pressures between 0 and 1 bar at 22 °C using a volumetric method. The isotherm-derived enthalpies range between −37 and −54 kJ mol–1 of CO2, and these values are in good agreement with computed enthalpies of gas-phase IL-CO2 reaction products from molecular electronic structure calculations. The AHA ILs show no substantial increase in viscosity when fully saturated with CO2 at 1 bar. Phase splitting and compositional analysis of one of the IL/H2O and IL/H2O/CO2 systems conclude that protonation of the 2-cyanopyrrolide anion is improbable, and this result was confirmed by the equimolar CO2 absorption in the presence of water. Taking advantage of the tunable binding energy and absence of viscosity increase after the reaction with CO2, AHA ILs are promising candidates for efficient and environmental-friendly absorbents in postcombustion CO2 capture.</abstract><pub>American Chemical Society</pub><doi>10.1021/jp502279w</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1520-6106
ispartof The journal of physical chemistry. B, 2014-05, Vol.118 (21), p.5740-5751
issn 1520-6106
1520-5207
language eng
recordid cdi_acs_journals_10_1021_jp502279w
source ACS Publications
title Chemically Tunable Ionic Liquids with Aprotic Heterocyclic Anion (AHA) for CO2 Capture
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T18%3A51%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chemically%20Tunable%20Ionic%20Liquids%20with%20Aprotic%20Heterocyclic%20Anion%20(AHA)%20for%20CO2%20Capture&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20B&rft.au=Seo,%20Samuel&rft.date=2014-05-29&rft.volume=118&rft.issue=21&rft.spage=5740&rft.epage=5751&rft.pages=5740-5751&rft.issn=1520-6106&rft.eissn=1520-5207&rft_id=info:doi/10.1021/jp502279w&rft_dat=%3Cacs%3Ea319627675%3C/acs%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true