Structure of Mo2C x and Mo4C x Molybdenum Carbide Nanoparticles and Their Anchoring Sites on ZSM‑5 Zeolites

Mo carbide nanoparticles supported on ZSM-5 zeolites are promising catalysts for methane dehydroaromatization. For this and other applications, it is important to identify the structure and anchoring sites of Mo carbide nanoparticles. In this work, structures of Mo2C x (x = 1, 2, 3, 4, and 6) and Mo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry. C 2014-03, Vol.118 (9), p.4670-4679
Hauptverfasser: Gao, Jie, Zheng, Yiteng, Fitzgerald, George B, de Joannis, Jason, Tang, Yadan, Wachs, Israel E, Podkolzin, Simon G
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4679
container_issue 9
container_start_page 4670
container_title Journal of physical chemistry. C
container_volume 118
creator Gao, Jie
Zheng, Yiteng
Fitzgerald, George B
de Joannis, Jason
Tang, Yadan
Wachs, Israel E
Podkolzin, Simon G
description Mo carbide nanoparticles supported on ZSM-5 zeolites are promising catalysts for methane dehydroaromatization. For this and other applications, it is important to identify the structure and anchoring sites of Mo carbide nanoparticles. In this work, structures of Mo2C x (x = 1, 2, 3, 4, and 6) and Mo4C x (x = 2, 4, 6, and 8) nanoparticles are identified using a genetic algorithm with density functional theory (DFT) calculations. The ZSM-5 anchoring sites are determined by evaluating infrared vibrational spectra for surface OH groups before and after Mo deposition. The spectroscopic results demonstrate that initial Mo oxide species preferentially anchors on framework Al sites and partially on Si sites on the external surface of the zeolite. In addition, Mo oxide deposition causes some dealumination, and a small fraction of Mo oxide species anchor on extraframework Al sites. Anchoring modes of Mo carbide nanoparticles are evaluated with DFT cluster calculations and with hybrid quantum mechanical and molecular mechanical (QM/MM) periodic structure calculations. Calculation results suggest that binding through two Mo atoms is energetically preferable for all Mo carbide nanoparticles on double Al-atom framework sites and external Si sites. On single Al-atom framework sites, the preferential binding mode depends on the particle composition. The calculations also suggest that Mo carbide nanoparticles with a C/Mo ratio greater than 1.5 are more stable on external Si sites and, thus, likely to migrate from zeolite pores onto the external surface of the zeolite. Therefore, in order to minimize such migration, the C/Mo ratio for zeolite-supported Mo carbide nanoparticles under hydrocarbon reaction conditions should be maintained below 1.5.
doi_str_mv 10.1021/jp4106053
format Article
fullrecord <record><control><sourceid>acs</sourceid><recordid>TN_cdi_acs_journals_10_1021_jp4106053</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a688113744</sourcerecordid><originalsourceid>FETCH-acs_journals_10_1021_jp41060533</originalsourceid><addsrcrecordid>eNqNj7sOgjAYhRujiXgZfIN_cURbLhJHQzQuuMDEQipULcGWtDTRzVfwFX0SwRhnp_PlnG85CM0IXhDskGVZewSvsO_2kEXWrmMHnu_3f-wFQzTSusStgYlroWvcKJM3RjGQJ4ikE8INqCha9DqMZHU_FkyYK4RUHXnB4ECFrKlqeF4x_XGTC-MKNiK_SMXFGWLetIsUkMbR6_H0IWWy6roJGpxopdn0m2M0322TcG_TXGelNEq0bUZw1n3Jfl_cf7039p5NVw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Structure of Mo2C x and Mo4C x Molybdenum Carbide Nanoparticles and Their Anchoring Sites on ZSM‑5 Zeolites</title><source>ACS Publications</source><creator>Gao, Jie ; Zheng, Yiteng ; Fitzgerald, George B ; de Joannis, Jason ; Tang, Yadan ; Wachs, Israel E ; Podkolzin, Simon G</creator><creatorcontrib>Gao, Jie ; Zheng, Yiteng ; Fitzgerald, George B ; de Joannis, Jason ; Tang, Yadan ; Wachs, Israel E ; Podkolzin, Simon G</creatorcontrib><description>Mo carbide nanoparticles supported on ZSM-5 zeolites are promising catalysts for methane dehydroaromatization. For this and other applications, it is important to identify the structure and anchoring sites of Mo carbide nanoparticles. In this work, structures of Mo2C x (x = 1, 2, 3, 4, and 6) and Mo4C x (x = 2, 4, 6, and 8) nanoparticles are identified using a genetic algorithm with density functional theory (DFT) calculations. The ZSM-5 anchoring sites are determined by evaluating infrared vibrational spectra for surface OH groups before and after Mo deposition. The spectroscopic results demonstrate that initial Mo oxide species preferentially anchors on framework Al sites and partially on Si sites on the external surface of the zeolite. In addition, Mo oxide deposition causes some dealumination, and a small fraction of Mo oxide species anchor on extraframework Al sites. Anchoring modes of Mo carbide nanoparticles are evaluated with DFT cluster calculations and with hybrid quantum mechanical and molecular mechanical (QM/MM) periodic structure calculations. Calculation results suggest that binding through two Mo atoms is energetically preferable for all Mo carbide nanoparticles on double Al-atom framework sites and external Si sites. On single Al-atom framework sites, the preferential binding mode depends on the particle composition. The calculations also suggest that Mo carbide nanoparticles with a C/Mo ratio greater than 1.5 are more stable on external Si sites and, thus, likely to migrate from zeolite pores onto the external surface of the zeolite. Therefore, in order to minimize such migration, the C/Mo ratio for zeolite-supported Mo carbide nanoparticles under hydrocarbon reaction conditions should be maintained below 1.5.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/jp4106053</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Journal of physical chemistry. C, 2014-03, Vol.118 (9), p.4670-4679</ispartof><rights>Copyright © 2014 American Chemical Society</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jp4106053$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jp4106053$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,781,785,27081,27929,27930,56743,56793</link.rule.ids></links><search><creatorcontrib>Gao, Jie</creatorcontrib><creatorcontrib>Zheng, Yiteng</creatorcontrib><creatorcontrib>Fitzgerald, George B</creatorcontrib><creatorcontrib>de Joannis, Jason</creatorcontrib><creatorcontrib>Tang, Yadan</creatorcontrib><creatorcontrib>Wachs, Israel E</creatorcontrib><creatorcontrib>Podkolzin, Simon G</creatorcontrib><title>Structure of Mo2C x and Mo4C x Molybdenum Carbide Nanoparticles and Their Anchoring Sites on ZSM‑5 Zeolites</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>Mo carbide nanoparticles supported on ZSM-5 zeolites are promising catalysts for methane dehydroaromatization. For this and other applications, it is important to identify the structure and anchoring sites of Mo carbide nanoparticles. In this work, structures of Mo2C x (x = 1, 2, 3, 4, and 6) and Mo4C x (x = 2, 4, 6, and 8) nanoparticles are identified using a genetic algorithm with density functional theory (DFT) calculations. The ZSM-5 anchoring sites are determined by evaluating infrared vibrational spectra for surface OH groups before and after Mo deposition. The spectroscopic results demonstrate that initial Mo oxide species preferentially anchors on framework Al sites and partially on Si sites on the external surface of the zeolite. In addition, Mo oxide deposition causes some dealumination, and a small fraction of Mo oxide species anchor on extraframework Al sites. Anchoring modes of Mo carbide nanoparticles are evaluated with DFT cluster calculations and with hybrid quantum mechanical and molecular mechanical (QM/MM) periodic structure calculations. Calculation results suggest that binding through two Mo atoms is energetically preferable for all Mo carbide nanoparticles on double Al-atom framework sites and external Si sites. On single Al-atom framework sites, the preferential binding mode depends on the particle composition. The calculations also suggest that Mo carbide nanoparticles with a C/Mo ratio greater than 1.5 are more stable on external Si sites and, thus, likely to migrate from zeolite pores onto the external surface of the zeolite. Therefore, in order to minimize such migration, the C/Mo ratio for zeolite-supported Mo carbide nanoparticles under hydrocarbon reaction conditions should be maintained below 1.5.</description><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqNj7sOgjAYhRujiXgZfIN_cURbLhJHQzQuuMDEQipULcGWtDTRzVfwFX0SwRhnp_PlnG85CM0IXhDskGVZewSvsO_2kEXWrmMHnu_3f-wFQzTSusStgYlroWvcKJM3RjGQJ4ikE8INqCha9DqMZHU_FkyYK4RUHXnB4ECFrKlqeF4x_XGTC-MKNiK_SMXFGWLetIsUkMbR6_H0IWWy6roJGpxopdn0m2M0322TcG_TXGelNEq0bUZw1n3Jfl_cf7039p5NVw</recordid><startdate>20140306</startdate><enddate>20140306</enddate><creator>Gao, Jie</creator><creator>Zheng, Yiteng</creator><creator>Fitzgerald, George B</creator><creator>de Joannis, Jason</creator><creator>Tang, Yadan</creator><creator>Wachs, Israel E</creator><creator>Podkolzin, Simon G</creator><general>American Chemical Society</general><scope/></search><sort><creationdate>20140306</creationdate><title>Structure of Mo2C x and Mo4C x Molybdenum Carbide Nanoparticles and Their Anchoring Sites on ZSM‑5 Zeolites</title><author>Gao, Jie ; Zheng, Yiteng ; Fitzgerald, George B ; de Joannis, Jason ; Tang, Yadan ; Wachs, Israel E ; Podkolzin, Simon G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-acs_journals_10_1021_jp41060533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Gao, Jie</creatorcontrib><creatorcontrib>Zheng, Yiteng</creatorcontrib><creatorcontrib>Fitzgerald, George B</creatorcontrib><creatorcontrib>de Joannis, Jason</creatorcontrib><creatorcontrib>Tang, Yadan</creatorcontrib><creatorcontrib>Wachs, Israel E</creatorcontrib><creatorcontrib>Podkolzin, Simon G</creatorcontrib><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gao, Jie</au><au>Zheng, Yiteng</au><au>Fitzgerald, George B</au><au>de Joannis, Jason</au><au>Tang, Yadan</au><au>Wachs, Israel E</au><au>Podkolzin, Simon G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure of Mo2C x and Mo4C x Molybdenum Carbide Nanoparticles and Their Anchoring Sites on ZSM‑5 Zeolites</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2014-03-06</date><risdate>2014</risdate><volume>118</volume><issue>9</issue><spage>4670</spage><epage>4679</epage><pages>4670-4679</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>Mo carbide nanoparticles supported on ZSM-5 zeolites are promising catalysts for methane dehydroaromatization. For this and other applications, it is important to identify the structure and anchoring sites of Mo carbide nanoparticles. In this work, structures of Mo2C x (x = 1, 2, 3, 4, and 6) and Mo4C x (x = 2, 4, 6, and 8) nanoparticles are identified using a genetic algorithm with density functional theory (DFT) calculations. The ZSM-5 anchoring sites are determined by evaluating infrared vibrational spectra for surface OH groups before and after Mo deposition. The spectroscopic results demonstrate that initial Mo oxide species preferentially anchors on framework Al sites and partially on Si sites on the external surface of the zeolite. In addition, Mo oxide deposition causes some dealumination, and a small fraction of Mo oxide species anchor on extraframework Al sites. Anchoring modes of Mo carbide nanoparticles are evaluated with DFT cluster calculations and with hybrid quantum mechanical and molecular mechanical (QM/MM) periodic structure calculations. Calculation results suggest that binding through two Mo atoms is energetically preferable for all Mo carbide nanoparticles on double Al-atom framework sites and external Si sites. On single Al-atom framework sites, the preferential binding mode depends on the particle composition. The calculations also suggest that Mo carbide nanoparticles with a C/Mo ratio greater than 1.5 are more stable on external Si sites and, thus, likely to migrate from zeolite pores onto the external surface of the zeolite. Therefore, in order to minimize such migration, the C/Mo ratio for zeolite-supported Mo carbide nanoparticles under hydrocarbon reaction conditions should be maintained below 1.5.</abstract><pub>American Chemical Society</pub><doi>10.1021/jp4106053</doi></addata></record>
fulltext fulltext
identifier ISSN: 1932-7447
ispartof Journal of physical chemistry. C, 2014-03, Vol.118 (9), p.4670-4679
issn 1932-7447
1932-7455
language eng
recordid cdi_acs_journals_10_1021_jp4106053
source ACS Publications
title Structure of Mo2C x and Mo4C x Molybdenum Carbide Nanoparticles and Their Anchoring Sites on ZSM‑5 Zeolites
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T12%3A51%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure%20of%20Mo2C%20x%20and%20Mo4C%20x%20Molybdenum%20Carbide%20Nanoparticles%20and%20Their%20Anchoring%20Sites%20on%20ZSM%E2%80%915%20Zeolites&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Gao,%20Jie&rft.date=2014-03-06&rft.volume=118&rft.issue=9&rft.spage=4670&rft.epage=4679&rft.pages=4670-4679&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/jp4106053&rft_dat=%3Cacs%3Ea688113744%3C/acs%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true