Electron Transport Patterns in TiO2 Nanotube Arrays Based Dye-Sensitized Solar Cells under Frontside and Backside Illuminations
TiO2 nanotube arrays (NTA), of 17–37 μm in thickness, detached from anodic oxidized Ti foils were used as photoanodes for dye-sensitized solar cells (DSSCs). Photovoltaic measurements under frontside and backside illumination showed that frontside illumination geometry provided better cell performan...
Gespeichert in:
Veröffentlicht in: | Journal of physical chemistry. C 2011-08, Vol.115 (30), p.15018-15024 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 15024 |
---|---|
container_issue | 30 |
container_start_page | 15018 |
container_title | Journal of physical chemistry. C |
container_volume | 115 |
creator | Hsiao, Po-Tsung Liou, Yong-Jin Teng, Hsisheng |
description | TiO2 nanotube arrays (NTA), of 17–37 μm in thickness, detached from anodic oxidized Ti foils were used as photoanodes for dye-sensitized solar cells (DSSCs). Photovoltaic measurements under frontside and backside illumination showed that frontside illumination geometry provided better cell performance than backside illumination did. A cell assembled with 30 μm thick NTA film produced the greatest photocurrent and light conversion efficiency. Despite an advantageous architecture for electron transport, electron trapping remained a limiting factor for both illumination geometries, due to the presence of crystal grains in the NTA walls. Intensity-modulated photocurrent spectroscopy (IMPS) analysis showed that electron transport in the front-illuminated cells comprises both trap-free and trap-limited diffusion modes, whereas electrons in the back-illuminated cells travel only by trap-limited diffusion. The trap-free diffusion mechanism determines front-illuminated cell performance. Electrochemical impedance spectroscopy analysis showed the front-illuminated NTA-based DSSCs have a charge collection efficiency of better than 90%, even at 30 μm NTA film thickness. Large crystal size results in low trap state density in the NTA film, and this effect may result in a more extensive trap-free diffusion zone in the films, which facilitates charge collection. |
doi_str_mv | 10.1021/jp202681c |
format | Article |
fullrecord | <record><control><sourceid>acs</sourceid><recordid>TN_cdi_acs_journals_10_1021_jp202681c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b474352036</sourcerecordid><originalsourceid>FETCH-LOGICAL-a185t-1641d8c4c72a7454a5bf61455445bc72463297a9ff51a435632d2fef7ccc3f733</originalsourceid><addsrcrecordid>eNo9kEtPwzAQhC0EEqVw4B_4wjHgZ9IeS2mhUkWRWs7RxrElB-NUtnMoF_56zUM97X4j7axmELql5J4SRh-6PSOsnFB1hkZ0yllRCSnPT7uoLtFVjB0hkhPKR-h74bRKofd4F8DHfR8SfoOUdPAR26zaDcOv4Ps0NBrPQoBDxI8QdYufDrrYah9tsl8Zt72DgOfauYgH3-qAl9k2RdtqDL7NR-rjF1bODZ_WQ7K9j9fowoCL-uZ_jtH7crGbvxTrzfNqPlsXQCcyFbQUtJ0ooSoGOZEA2ZiS5mhCyCaLouRsWsHUGElBcJmxZUabSinFTcX5GN39-YKKddcPwedvNSX1T2v1qTV-BHTdYJk</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Electron Transport Patterns in TiO2 Nanotube Arrays Based Dye-Sensitized Solar Cells under Frontside and Backside Illuminations</title><source>ACS Publications</source><creator>Hsiao, Po-Tsung ; Liou, Yong-Jin ; Teng, Hsisheng</creator><creatorcontrib>Hsiao, Po-Tsung ; Liou, Yong-Jin ; Teng, Hsisheng</creatorcontrib><description>TiO2 nanotube arrays (NTA), of 17–37 μm in thickness, detached from anodic oxidized Ti foils were used as photoanodes for dye-sensitized solar cells (DSSCs). Photovoltaic measurements under frontside and backside illumination showed that frontside illumination geometry provided better cell performance than backside illumination did. A cell assembled with 30 μm thick NTA film produced the greatest photocurrent and light conversion efficiency. Despite an advantageous architecture for electron transport, electron trapping remained a limiting factor for both illumination geometries, due to the presence of crystal grains in the NTA walls. Intensity-modulated photocurrent spectroscopy (IMPS) analysis showed that electron transport in the front-illuminated cells comprises both trap-free and trap-limited diffusion modes, whereas electrons in the back-illuminated cells travel only by trap-limited diffusion. The trap-free diffusion mechanism determines front-illuminated cell performance. Electrochemical impedance spectroscopy analysis showed the front-illuminated NTA-based DSSCs have a charge collection efficiency of better than 90%, even at 30 μm NTA film thickness. Large crystal size results in low trap state density in the NTA film, and this effect may result in a more extensive trap-free diffusion zone in the films, which facilitates charge collection.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/jp202681c</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>C: Electron Transport, Optical and Electronic Devices, Hard Matter</subject><ispartof>Journal of physical chemistry. C, 2011-08, Vol.115 (30), p.15018-15024</ispartof><rights>Copyright © 2011 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jp202681c$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jp202681c$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Hsiao, Po-Tsung</creatorcontrib><creatorcontrib>Liou, Yong-Jin</creatorcontrib><creatorcontrib>Teng, Hsisheng</creatorcontrib><title>Electron Transport Patterns in TiO2 Nanotube Arrays Based Dye-Sensitized Solar Cells under Frontside and Backside Illuminations</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>TiO2 nanotube arrays (NTA), of 17–37 μm in thickness, detached from anodic oxidized Ti foils were used as photoanodes for dye-sensitized solar cells (DSSCs). Photovoltaic measurements under frontside and backside illumination showed that frontside illumination geometry provided better cell performance than backside illumination did. A cell assembled with 30 μm thick NTA film produced the greatest photocurrent and light conversion efficiency. Despite an advantageous architecture for electron transport, electron trapping remained a limiting factor for both illumination geometries, due to the presence of crystal grains in the NTA walls. Intensity-modulated photocurrent spectroscopy (IMPS) analysis showed that electron transport in the front-illuminated cells comprises both trap-free and trap-limited diffusion modes, whereas electrons in the back-illuminated cells travel only by trap-limited diffusion. The trap-free diffusion mechanism determines front-illuminated cell performance. Electrochemical impedance spectroscopy analysis showed the front-illuminated NTA-based DSSCs have a charge collection efficiency of better than 90%, even at 30 μm NTA film thickness. Large crystal size results in low trap state density in the NTA film, and this effect may result in a more extensive trap-free diffusion zone in the films, which facilitates charge collection.</description><subject>C: Electron Transport, Optical and Electronic Devices, Hard Matter</subject><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNo9kEtPwzAQhC0EEqVw4B_4wjHgZ9IeS2mhUkWRWs7RxrElB-NUtnMoF_56zUM97X4j7axmELql5J4SRh-6PSOsnFB1hkZ0yllRCSnPT7uoLtFVjB0hkhPKR-h74bRKofd4F8DHfR8SfoOUdPAR26zaDcOv4Ps0NBrPQoBDxI8QdYufDrrYah9tsl8Zt72DgOfauYgH3-qAl9k2RdtqDL7NR-rjF1bODZ_WQ7K9j9fowoCL-uZ_jtH7crGbvxTrzfNqPlsXQCcyFbQUtJ0ooSoGOZEA2ZiS5mhCyCaLouRsWsHUGElBcJmxZUabSinFTcX5GN39-YKKddcPwedvNSX1T2v1qTV-BHTdYJk</recordid><startdate>20110804</startdate><enddate>20110804</enddate><creator>Hsiao, Po-Tsung</creator><creator>Liou, Yong-Jin</creator><creator>Teng, Hsisheng</creator><general>American Chemical Society</general><scope/></search><sort><creationdate>20110804</creationdate><title>Electron Transport Patterns in TiO2 Nanotube Arrays Based Dye-Sensitized Solar Cells under Frontside and Backside Illuminations</title><author>Hsiao, Po-Tsung ; Liou, Yong-Jin ; Teng, Hsisheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a185t-1641d8c4c72a7454a5bf61455445bc72463297a9ff51a435632d2fef7ccc3f733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>C: Electron Transport, Optical and Electronic Devices, Hard Matter</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hsiao, Po-Tsung</creatorcontrib><creatorcontrib>Liou, Yong-Jin</creatorcontrib><creatorcontrib>Teng, Hsisheng</creatorcontrib><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hsiao, Po-Tsung</au><au>Liou, Yong-Jin</au><au>Teng, Hsisheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electron Transport Patterns in TiO2 Nanotube Arrays Based Dye-Sensitized Solar Cells under Frontside and Backside Illuminations</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2011-08-04</date><risdate>2011</risdate><volume>115</volume><issue>30</issue><spage>15018</spage><epage>15024</epage><pages>15018-15024</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>TiO2 nanotube arrays (NTA), of 17–37 μm in thickness, detached from anodic oxidized Ti foils were used as photoanodes for dye-sensitized solar cells (DSSCs). Photovoltaic measurements under frontside and backside illumination showed that frontside illumination geometry provided better cell performance than backside illumination did. A cell assembled with 30 μm thick NTA film produced the greatest photocurrent and light conversion efficiency. Despite an advantageous architecture for electron transport, electron trapping remained a limiting factor for both illumination geometries, due to the presence of crystal grains in the NTA walls. Intensity-modulated photocurrent spectroscopy (IMPS) analysis showed that electron transport in the front-illuminated cells comprises both trap-free and trap-limited diffusion modes, whereas electrons in the back-illuminated cells travel only by trap-limited diffusion. The trap-free diffusion mechanism determines front-illuminated cell performance. Electrochemical impedance spectroscopy analysis showed the front-illuminated NTA-based DSSCs have a charge collection efficiency of better than 90%, even at 30 μm NTA film thickness. Large crystal size results in low trap state density in the NTA film, and this effect may result in a more extensive trap-free diffusion zone in the films, which facilitates charge collection.</abstract><pub>American Chemical Society</pub><doi>10.1021/jp202681c</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-7447 |
ispartof | Journal of physical chemistry. C, 2011-08, Vol.115 (30), p.15018-15024 |
issn | 1932-7447 1932-7455 |
language | eng |
recordid | cdi_acs_journals_10_1021_jp202681c |
source | ACS Publications |
subjects | C: Electron Transport, Optical and Electronic Devices, Hard Matter |
title | Electron Transport Patterns in TiO2 Nanotube Arrays Based Dye-Sensitized Solar Cells under Frontside and Backside Illuminations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T19%3A56%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electron%20Transport%20Patterns%20in%20TiO2%20Nanotube%20Arrays%20Based%20Dye-Sensitized%20Solar%20Cells%20under%20Frontside%20and%20Backside%20Illuminations&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Hsiao,%20Po-Tsung&rft.date=2011-08-04&rft.volume=115&rft.issue=30&rft.spage=15018&rft.epage=15024&rft.pages=15018-15024&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/jp202681c&rft_dat=%3Cacs%3Eb474352036%3C/acs%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |