Composition-Dependent Structural and Electronic Properties of α-(Si1−x C x )3N4
The highly unusual structural and electronic properties of the α-phase of (Si1−x C x )3N4 are determined by density functional theory (DFT) calculations using the Generalized Gradient Approximation (GGA). The electronic properties of α-(Si1−x C x )3N4 are found to be very close to those of α-C3N4. T...
Gespeichert in:
Veröffentlicht in: | Journal of physical chemistry. C 2011-02, Vol.115 (5), p.2448-2453 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2453 |
---|---|
container_issue | 5 |
container_start_page | 2448 |
container_title | Journal of physical chemistry. C |
container_volume | 115 |
creator | Xu, M Xu, S Duan, M. Y Delanty, M Jiang, N Li, H. S Kwek, L. C Ostrikov, K |
description | The highly unusual structural and electronic properties of the α-phase of (Si1−x C x )3N4 are determined by density functional theory (DFT) calculations using the Generalized Gradient Approximation (GGA). The electronic properties of α-(Si1−x C x )3N4 are found to be very close to those of α-C3N4. The bandgap of α-(Si1−x C x )3N4 significantly decreases as C atoms are substituted by Si atoms (in most cases, smaller than that of either α-Si3N4 or α-C3N4) and attains a minimum when the ratio of C to Si is close to 2. On the other hand, the bulk modulus of α-(Si1−x C x )3N4 is found to be closer to that of α-Si3N4 than of α-C3N4. Plasma-assisted synthesis experiments of CN x and SiCN films are performed to verify the accuracy of the DFT calculations. TEM measurements confirm the calculated lattice constants, and FT-IR/XPS analysis confirms the formation and lengths of C−N and Si−N bonds. The results of DFT calculations are also in a remarkable agreement with the experiments of other authors. |
doi_str_mv | 10.1021/jp110109x |
format | Article |
fullrecord | <record><control><sourceid>acs</sourceid><recordid>TN_cdi_acs_journals_10_1021_jp110109x</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a986877475</sourcerecordid><originalsourceid>FETCH-LOGICAL-a100t-91067be26ddf5a8705edb026e842c564973f5cf01ff5099cac0aa9cec84eb5d33</originalsourceid><addsrcrecordid>eNo9kE1KxDAYhoMoOI4uvEE2gi6q39ckbbOUOv7AoOLouqT5gZbalDSFHsG1N_EiHsKTqCizet7V88JDyDHCOUKKF-2ACAhy3iELlCxNci7E7nbzfJ8cjGMLIBggW5Cn0r8Ofmxi4_vkyg62N7aPdBPDpOMUVEdVb-iqszoG3zeaPgY_2BAbO1Lv6OdHcrpp8OvtfaYlnekZu-eHZM-pbrRH_1ySl-vVc3mbrB9u7srLdaIQICYSIctrm2bGOKGKHIQ1NaSZLXiqRcZlzpzQDtA5AVJqpUEpqa0uuK2FYWxJTv68So9V66fQ_7xVCNVviGobgn0DO_VRmw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Composition-Dependent Structural and Electronic Properties of α-(Si1−x C x )3N4</title><source>ACS Publications</source><creator>Xu, M ; Xu, S ; Duan, M. Y ; Delanty, M ; Jiang, N ; Li, H. S ; Kwek, L. C ; Ostrikov, K</creator><creatorcontrib>Xu, M ; Xu, S ; Duan, M. Y ; Delanty, M ; Jiang, N ; Li, H. S ; Kwek, L. C ; Ostrikov, K</creatorcontrib><description>The highly unusual structural and electronic properties of the α-phase of (Si1−x C x )3N4 are determined by density functional theory (DFT) calculations using the Generalized Gradient Approximation (GGA). The electronic properties of α-(Si1−x C x )3N4 are found to be very close to those of α-C3N4. The bandgap of α-(Si1−x C x )3N4 significantly decreases as C atoms are substituted by Si atoms (in most cases, smaller than that of either α-Si3N4 or α-C3N4) and attains a minimum when the ratio of C to Si is close to 2. On the other hand, the bulk modulus of α-(Si1−x C x )3N4 is found to be closer to that of α-Si3N4 than of α-C3N4. Plasma-assisted synthesis experiments of CN x and SiCN films are performed to verify the accuracy of the DFT calculations. TEM measurements confirm the calculated lattice constants, and FT-IR/XPS analysis confirms the formation and lengths of C−N and Si−N bonds. The results of DFT calculations are also in a remarkable agreement with the experiments of other authors.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/jp110109x</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>C: Electron Transport, Optical and Electronic Devices, Hard Matter</subject><ispartof>Journal of physical chemistry. C, 2011-02, Vol.115 (5), p.2448-2453</ispartof><rights>Copyright © 2011 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jp110109x$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jp110109x$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Xu, M</creatorcontrib><creatorcontrib>Xu, S</creatorcontrib><creatorcontrib>Duan, M. Y</creatorcontrib><creatorcontrib>Delanty, M</creatorcontrib><creatorcontrib>Jiang, N</creatorcontrib><creatorcontrib>Li, H. S</creatorcontrib><creatorcontrib>Kwek, L. C</creatorcontrib><creatorcontrib>Ostrikov, K</creatorcontrib><title>Composition-Dependent Structural and Electronic Properties of α-(Si1−x C x )3N4</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>The highly unusual structural and electronic properties of the α-phase of (Si1−x C x )3N4 are determined by density functional theory (DFT) calculations using the Generalized Gradient Approximation (GGA). The electronic properties of α-(Si1−x C x )3N4 are found to be very close to those of α-C3N4. The bandgap of α-(Si1−x C x )3N4 significantly decreases as C atoms are substituted by Si atoms (in most cases, smaller than that of either α-Si3N4 or α-C3N4) and attains a minimum when the ratio of C to Si is close to 2. On the other hand, the bulk modulus of α-(Si1−x C x )3N4 is found to be closer to that of α-Si3N4 than of α-C3N4. Plasma-assisted synthesis experiments of CN x and SiCN films are performed to verify the accuracy of the DFT calculations. TEM measurements confirm the calculated lattice constants, and FT-IR/XPS analysis confirms the formation and lengths of C−N and Si−N bonds. The results of DFT calculations are also in a remarkable agreement with the experiments of other authors.</description><subject>C: Electron Transport, Optical and Electronic Devices, Hard Matter</subject><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNo9kE1KxDAYhoMoOI4uvEE2gi6q39ckbbOUOv7AoOLouqT5gZbalDSFHsG1N_EiHsKTqCizet7V88JDyDHCOUKKF-2ACAhy3iELlCxNci7E7nbzfJ8cjGMLIBggW5Cn0r8Ofmxi4_vkyg62N7aPdBPDpOMUVEdVb-iqszoG3zeaPgY_2BAbO1Lv6OdHcrpp8OvtfaYlnekZu-eHZM-pbrRH_1ySl-vVc3mbrB9u7srLdaIQICYSIctrm2bGOKGKHIQ1NaSZLXiqRcZlzpzQDtA5AVJqpUEpqa0uuK2FYWxJTv68So9V66fQ_7xVCNVviGobgn0DO_VRmw</recordid><startdate>20110210</startdate><enddate>20110210</enddate><creator>Xu, M</creator><creator>Xu, S</creator><creator>Duan, M. Y</creator><creator>Delanty, M</creator><creator>Jiang, N</creator><creator>Li, H. S</creator><creator>Kwek, L. C</creator><creator>Ostrikov, K</creator><general>American Chemical Society</general><scope/></search><sort><creationdate>20110210</creationdate><title>Composition-Dependent Structural and Electronic Properties of α-(Si1−x C x )3N4</title><author>Xu, M ; Xu, S ; Duan, M. Y ; Delanty, M ; Jiang, N ; Li, H. S ; Kwek, L. C ; Ostrikov, K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a100t-91067be26ddf5a8705edb026e842c564973f5cf01ff5099cac0aa9cec84eb5d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>C: Electron Transport, Optical and Electronic Devices, Hard Matter</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, M</creatorcontrib><creatorcontrib>Xu, S</creatorcontrib><creatorcontrib>Duan, M. Y</creatorcontrib><creatorcontrib>Delanty, M</creatorcontrib><creatorcontrib>Jiang, N</creatorcontrib><creatorcontrib>Li, H. S</creatorcontrib><creatorcontrib>Kwek, L. C</creatorcontrib><creatorcontrib>Ostrikov, K</creatorcontrib><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, M</au><au>Xu, S</au><au>Duan, M. Y</au><au>Delanty, M</au><au>Jiang, N</au><au>Li, H. S</au><au>Kwek, L. C</au><au>Ostrikov, K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Composition-Dependent Structural and Electronic Properties of α-(Si1−x C x )3N4</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2011-02-10</date><risdate>2011</risdate><volume>115</volume><issue>5</issue><spage>2448</spage><epage>2453</epage><pages>2448-2453</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>The highly unusual structural and electronic properties of the α-phase of (Si1−x C x )3N4 are determined by density functional theory (DFT) calculations using the Generalized Gradient Approximation (GGA). The electronic properties of α-(Si1−x C x )3N4 are found to be very close to those of α-C3N4. The bandgap of α-(Si1−x C x )3N4 significantly decreases as C atoms are substituted by Si atoms (in most cases, smaller than that of either α-Si3N4 or α-C3N4) and attains a minimum when the ratio of C to Si is close to 2. On the other hand, the bulk modulus of α-(Si1−x C x )3N4 is found to be closer to that of α-Si3N4 than of α-C3N4. Plasma-assisted synthesis experiments of CN x and SiCN films are performed to verify the accuracy of the DFT calculations. TEM measurements confirm the calculated lattice constants, and FT-IR/XPS analysis confirms the formation and lengths of C−N and Si−N bonds. The results of DFT calculations are also in a remarkable agreement with the experiments of other authors.</abstract><pub>American Chemical Society</pub><doi>10.1021/jp110109x</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-7447 |
ispartof | Journal of physical chemistry. C, 2011-02, Vol.115 (5), p.2448-2453 |
issn | 1932-7447 1932-7455 |
language | eng |
recordid | cdi_acs_journals_10_1021_jp110109x |
source | ACS Publications |
subjects | C: Electron Transport, Optical and Electronic Devices, Hard Matter |
title | Composition-Dependent Structural and Electronic Properties of α-(Si1−x C x )3N4 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T17%3A47%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Composition-Dependent%20Structural%20and%20Electronic%20Properties%20of%20%CE%B1-(Si1%E2%88%92x%20C%20x%20)3N4&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Xu,%20M&rft.date=2011-02-10&rft.volume=115&rft.issue=5&rft.spage=2448&rft.epage=2453&rft.pages=2448-2453&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/jp110109x&rft_dat=%3Cacs%3Ea986877475%3C/acs%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |