Structural Characterization of Nanocrystalline Sb-Doped SnO2 Xerogels by Multiedge X-ray Absorption Spectroscopy

Multiedge XAS data are presented for Sb-doped SnO2 xerogels dried at 200 °C and fired at 550 °C, aiming to determine the location of antimony doping in the host matrix and then to understand the role that the intentional impurity plays in the structure and properties of the tin oxide based materials...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry. C 2010-11, Vol.114 (45), p.19206-19213
Hauptverfasser: Geraldo, V, Briois, V, Scalvi, L. V. A, Santilli, C. V
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 19213
container_issue 45
container_start_page 19206
container_title Journal of physical chemistry. C
container_volume 114
creator Geraldo, V
Briois, V
Scalvi, L. V. A
Santilli, C. V
description Multiedge XAS data are presented for Sb-doped SnO2 xerogels dried at 200 °C and fired at 550 °C, aiming to determine the location of antimony doping in the host matrix and then to understand the role that the intentional impurity plays in the structure and properties of the tin oxide based materials. Xerogel processing at 200 °C leads to the original trivalent antimony, used for the xerogel preparation to the SbV oxidation state, mainly for low doping levels ([Sb] ≤ 4 atom %). As the doping level increases, a significant amount of antimony remains in the trivalent oxidation state. Upon firing at 550 °C, the antimony is present mainly as SbV, independent of the doping level. The analysis of EXAFS data recorded at the Sn and Sb K edges leads to the conclusion that doping with Sb for a level of less than 4 atom % favors crystallite growth, concomitant with a strong dominance of the SbV oxidation state. Besides, the pentavalent antimony is located at internal sites of the SnO2 nanocrystallites. The EXAFS spectra of the higher ([Sb] > 4 atom %) doped samples can always be fitted by a linear combination of the spectra corresponding to the SbV site in solid solution and the spectra corresponding to the sample where SbIII is chemically grafted at the surface of the SnO2 crystallite. This SbIII segregation also agrees with the low electrical conductivity reported for sol−gel deposited films, because it generates a barrier at the grain boundary, inducing a very high electron scattering and, thus, a low electron mobility.
doi_str_mv 10.1021/jp106001x
format Article
fullrecord <record><control><sourceid>acs</sourceid><recordid>TN_cdi_acs_journals_10_1021_jp106001x</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c902710678</sourcerecordid><originalsourceid>FETCH-LOGICAL-a185t-c9bf428ee4daf603f77fe88cd640b623f006196d353479896f740b2be9b003093</originalsourceid><addsrcrecordid>eNo9kF1LwzAYhYMoOKcX_oPceFl907RpczmmTmG6iyrsriTpm9lRmpKkYP31zg92dQ4ceA48hFwzuGWQsrv9wEAAsM8TMmOSp0mR5fnpsWfFObkIYQ-Qc2B8RoYq-tHE0auOLj-UVyaib79UbF1PnaWvqnfGTyGqrmt7pJVO7t2ADa36TUq36N0Ou0D1RF_GLrbY7JBuE68mutDB-eGXUw1oonfBuGG6JGdWdQGv_nNO3h8f3pZPyXqzel4u1oliZR4TI7XN0hIxa5QVwG1RWCxL04gMtEi5BRBMiobnPCtkKYUtDkOqUWoADpLPyc0fV5lQ793o-8NbzaD-0VQfNfFvA_Fb8g</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Structural Characterization of Nanocrystalline Sb-Doped SnO2 Xerogels by Multiedge X-ray Absorption Spectroscopy</title><source>ACS Publications</source><creator>Geraldo, V ; Briois, V ; Scalvi, L. V. A ; Santilli, C. V</creator><creatorcontrib>Geraldo, V ; Briois, V ; Scalvi, L. V. A ; Santilli, C. V</creatorcontrib><description>Multiedge XAS data are presented for Sb-doped SnO2 xerogels dried at 200 °C and fired at 550 °C, aiming to determine the location of antimony doping in the host matrix and then to understand the role that the intentional impurity plays in the structure and properties of the tin oxide based materials. Xerogel processing at 200 °C leads to the original trivalent antimony, used for the xerogel preparation to the SbV oxidation state, mainly for low doping levels ([Sb] ≤ 4 atom %). As the doping level increases, a significant amount of antimony remains in the trivalent oxidation state. Upon firing at 550 °C, the antimony is present mainly as SbV, independent of the doping level. The analysis of EXAFS data recorded at the Sn and Sb K edges leads to the conclusion that doping with Sb for a level of less than 4 atom % favors crystallite growth, concomitant with a strong dominance of the SbV oxidation state. Besides, the pentavalent antimony is located at internal sites of the SnO2 nanocrystallites. The EXAFS spectra of the higher ([Sb] &gt; 4 atom %) doped samples can always be fitted by a linear combination of the spectra corresponding to the SbV site in solid solution and the spectra corresponding to the sample where SbIII is chemically grafted at the surface of the SnO2 crystallite. This SbIII segregation also agrees with the low electrical conductivity reported for sol−gel deposited films, because it generates a barrier at the grain boundary, inducing a very high electron scattering and, thus, a low electron mobility.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/jp106001x</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>C: Nanops and Nanostructures</subject><ispartof>Journal of physical chemistry. C, 2010-11, Vol.114 (45), p.19206-19213</ispartof><rights>Copyright © 2010 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jp106001x$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jp106001x$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Geraldo, V</creatorcontrib><creatorcontrib>Briois, V</creatorcontrib><creatorcontrib>Scalvi, L. V. A</creatorcontrib><creatorcontrib>Santilli, C. V</creatorcontrib><title>Structural Characterization of Nanocrystalline Sb-Doped SnO2 Xerogels by Multiedge X-ray Absorption Spectroscopy</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>Multiedge XAS data are presented for Sb-doped SnO2 xerogels dried at 200 °C and fired at 550 °C, aiming to determine the location of antimony doping in the host matrix and then to understand the role that the intentional impurity plays in the structure and properties of the tin oxide based materials. Xerogel processing at 200 °C leads to the original trivalent antimony, used for the xerogel preparation to the SbV oxidation state, mainly for low doping levels ([Sb] ≤ 4 atom %). As the doping level increases, a significant amount of antimony remains in the trivalent oxidation state. Upon firing at 550 °C, the antimony is present mainly as SbV, independent of the doping level. The analysis of EXAFS data recorded at the Sn and Sb K edges leads to the conclusion that doping with Sb for a level of less than 4 atom % favors crystallite growth, concomitant with a strong dominance of the SbV oxidation state. Besides, the pentavalent antimony is located at internal sites of the SnO2 nanocrystallites. The EXAFS spectra of the higher ([Sb] &gt; 4 atom %) doped samples can always be fitted by a linear combination of the spectra corresponding to the SbV site in solid solution and the spectra corresponding to the sample where SbIII is chemically grafted at the surface of the SnO2 crystallite. This SbIII segregation also agrees with the low electrical conductivity reported for sol−gel deposited films, because it generates a barrier at the grain boundary, inducing a very high electron scattering and, thus, a low electron mobility.</description><subject>C: Nanops and Nanostructures</subject><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNo9kF1LwzAYhYMoOKcX_oPceFl907RpczmmTmG6iyrsriTpm9lRmpKkYP31zg92dQ4ceA48hFwzuGWQsrv9wEAAsM8TMmOSp0mR5fnpsWfFObkIYQ-Qc2B8RoYq-tHE0auOLj-UVyaib79UbF1PnaWvqnfGTyGqrmt7pJVO7t2ADa36TUq36N0Ou0D1RF_GLrbY7JBuE68mutDB-eGXUw1oonfBuGG6JGdWdQGv_nNO3h8f3pZPyXqzel4u1oliZR4TI7XN0hIxa5QVwG1RWCxL04gMtEi5BRBMiobnPCtkKYUtDkOqUWoADpLPyc0fV5lQ793o-8NbzaD-0VQfNfFvA_Fb8g</recordid><startdate>20101118</startdate><enddate>20101118</enddate><creator>Geraldo, V</creator><creator>Briois, V</creator><creator>Scalvi, L. V. A</creator><creator>Santilli, C. V</creator><general>American Chemical Society</general><scope/></search><sort><creationdate>20101118</creationdate><title>Structural Characterization of Nanocrystalline Sb-Doped SnO2 Xerogels by Multiedge X-ray Absorption Spectroscopy</title><author>Geraldo, V ; Briois, V ; Scalvi, L. V. A ; Santilli, C. V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a185t-c9bf428ee4daf603f77fe88cd640b623f006196d353479896f740b2be9b003093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>C: Nanops and Nanostructures</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Geraldo, V</creatorcontrib><creatorcontrib>Briois, V</creatorcontrib><creatorcontrib>Scalvi, L. V. A</creatorcontrib><creatorcontrib>Santilli, C. V</creatorcontrib><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Geraldo, V</au><au>Briois, V</au><au>Scalvi, L. V. A</au><au>Santilli, C. V</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural Characterization of Nanocrystalline Sb-Doped SnO2 Xerogels by Multiedge X-ray Absorption Spectroscopy</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2010-11-18</date><risdate>2010</risdate><volume>114</volume><issue>45</issue><spage>19206</spage><epage>19213</epage><pages>19206-19213</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>Multiedge XAS data are presented for Sb-doped SnO2 xerogels dried at 200 °C and fired at 550 °C, aiming to determine the location of antimony doping in the host matrix and then to understand the role that the intentional impurity plays in the structure and properties of the tin oxide based materials. Xerogel processing at 200 °C leads to the original trivalent antimony, used for the xerogel preparation to the SbV oxidation state, mainly for low doping levels ([Sb] ≤ 4 atom %). As the doping level increases, a significant amount of antimony remains in the trivalent oxidation state. Upon firing at 550 °C, the antimony is present mainly as SbV, independent of the doping level. The analysis of EXAFS data recorded at the Sn and Sb K edges leads to the conclusion that doping with Sb for a level of less than 4 atom % favors crystallite growth, concomitant with a strong dominance of the SbV oxidation state. Besides, the pentavalent antimony is located at internal sites of the SnO2 nanocrystallites. The EXAFS spectra of the higher ([Sb] &gt; 4 atom %) doped samples can always be fitted by a linear combination of the spectra corresponding to the SbV site in solid solution and the spectra corresponding to the sample where SbIII is chemically grafted at the surface of the SnO2 crystallite. This SbIII segregation also agrees with the low electrical conductivity reported for sol−gel deposited films, because it generates a barrier at the grain boundary, inducing a very high electron scattering and, thus, a low electron mobility.</abstract><pub>American Chemical Society</pub><doi>10.1021/jp106001x</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1932-7447
ispartof Journal of physical chemistry. C, 2010-11, Vol.114 (45), p.19206-19213
issn 1932-7447
1932-7455
language eng
recordid cdi_acs_journals_10_1021_jp106001x
source ACS Publications
subjects C: Nanops and Nanostructures
title Structural Characterization of Nanocrystalline Sb-Doped SnO2 Xerogels by Multiedge X-ray Absorption Spectroscopy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T01%3A34%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20Characterization%20of%20Nanocrystalline%20Sb-Doped%20SnO2%20Xerogels%20by%20Multiedge%20X-ray%20Absorption%20Spectroscopy&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Geraldo,%20V&rft.date=2010-11-18&rft.volume=114&rft.issue=45&rft.spage=19206&rft.epage=19213&rft.pages=19206-19213&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/jp106001x&rft_dat=%3Cacs%3Ec902710678%3C/acs%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true