Formation Mechanism and Hydrothermal Synthesis of Highly Active Ir1–x Ru x O2 Nanoparticles for the Oxygen Evolution Reaction

Iridium dioxide (IrO2), ruthenium dioxide (RuO2), and their solid solutions (Ir1–x Ru x O2) are very active electrocatalysts for the oxygen evolution reaction (OER). Efficient and facile synthesis of nanosized crystallites of these materials is of high significance for electrocatalytic applications...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2024-08, Vol.146 (34), p.23729-23740
Hauptverfasser: Bertelsen, Andreas Dueholm, Kløve, Magnus, Broge, Nils Lau Nyborg, Bondesgaard, Martin, Stubkjær, Rasmus Baden, Dippel, Ann-Christin, Li, Qinyu, Tilley, Richard, Vogel Jørgensen, Mads Ry, Iversen, Bo Brummerstedt
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 23740
container_issue 34
container_start_page 23729
container_title Journal of the American Chemical Society
container_volume 146
creator Bertelsen, Andreas Dueholm
Kløve, Magnus
Broge, Nils Lau Nyborg
Bondesgaard, Martin
Stubkjær, Rasmus Baden
Dippel, Ann-Christin
Li, Qinyu
Tilley, Richard
Vogel Jørgensen, Mads Ry
Iversen, Bo Brummerstedt
description Iridium dioxide (IrO2), ruthenium dioxide (RuO2), and their solid solutions (Ir1–x Ru x O2) are very active electrocatalysts for the oxygen evolution reaction (OER). Efficient and facile synthesis of nanosized crystallites of these materials is of high significance for electrocatalytic applications for converting green energy to fuels (power-to-X). Here, we use in situ X-ray scattering to examine reaction conditions for different Ir and Ru precursors resulting in the development of a simple hydrothermal synthesis route using IrCl3 and KRuO4 to obtain homogeneous phase-pure Ir1–x Ru x O2 nanocrystals. The solid solution nanocrystals can be obtained with a tunable composition of 0.2 < x < 1.0 and with ultra-small coherently scattering crystalline domains estimated from 1.3 to 2.6 nm in diameter based on PDF refinements. The in situ X-ray scattering data reveal a two-step formation mechanism, which involves the initial loss of chloride ligands followed by the formation of metal–oxygen octahedra clusters containing both Ir and Ru. These octahedra assemble with time resulting in long-range order resembling the rutile structure. The mixing of the metals on the atomic scale during the crystal formation presumably allows the formation of the solid solution rather than heterogeneous mixtures. The size of the final nanocrystals can be controlled by tuning the synthesis temperature. The facile hydrothermal synthesis route provides ultra-small nanoparticles with activity toward the OER in acidic electrolytes comparable to the best in the literature, and the optimal material composition very favorably combines low overpotential, high mass activity, and increased stability.
doi_str_mv 10.1021/jacs.4c04607
format Article
fullrecord <record><control><sourceid>acs</sourceid><recordid>TN_cdi_acs_journals_10_1021_jacs_4c04607</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b641128702</sourcerecordid><originalsourceid>FETCH-LOGICAL-a118t-9302c79b34c9290189cb0131dcbf20682676f7f64e089ac6d00b31ec731d47f53</originalsourceid><addsrcrecordid>eNotkEFOwzAQRS0EEqWw4wCzZJMytlM7WVZVSysVKhVYR47jtKlSG8Vp1azgDtyQk-BCV_NHM_9_6RFyT3FAkdHHrdJ-EGuMBcoL0qNDhtGQMnFJeojIIpkIfk1uvN-GNWYJ7ZHPqWt2qq2chWejN8pWfgfKFjDrisa1GxOuNbx2NkhfeXAlzKr1pu5gpNvqYGDe0J-v7yOs9nCEJYMXZd2HatpK18ZD6RoITlgeu7WxMDm4ev9XtjJKn8QtuSpV7c3defbJ-3TyNp5Fi-XTfDxaRIrSpI1SjkzLNOexTlmKNEl1jpTTQuclQ5EwIUUpSxEbTFKlRYGYc2q0DC-xLIe8Tx7-cwOibOv2jQ1tGcXsBC47gcvO4PgvS0xjAg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Formation Mechanism and Hydrothermal Synthesis of Highly Active Ir1–x Ru x O2 Nanoparticles for the Oxygen Evolution Reaction</title><source>ACS Publications</source><creator>Bertelsen, Andreas Dueholm ; Kløve, Magnus ; Broge, Nils Lau Nyborg ; Bondesgaard, Martin ; Stubkjær, Rasmus Baden ; Dippel, Ann-Christin ; Li, Qinyu ; Tilley, Richard ; Vogel Jørgensen, Mads Ry ; Iversen, Bo Brummerstedt</creator><creatorcontrib>Bertelsen, Andreas Dueholm ; Kløve, Magnus ; Broge, Nils Lau Nyborg ; Bondesgaard, Martin ; Stubkjær, Rasmus Baden ; Dippel, Ann-Christin ; Li, Qinyu ; Tilley, Richard ; Vogel Jørgensen, Mads Ry ; Iversen, Bo Brummerstedt</creatorcontrib><description>Iridium dioxide (IrO2), ruthenium dioxide (RuO2), and their solid solutions (Ir1–x Ru x O2) are very active electrocatalysts for the oxygen evolution reaction (OER). Efficient and facile synthesis of nanosized crystallites of these materials is of high significance for electrocatalytic applications for converting green energy to fuels (power-to-X). Here, we use in situ X-ray scattering to examine reaction conditions for different Ir and Ru precursors resulting in the development of a simple hydrothermal synthesis route using IrCl3 and KRuO4 to obtain homogeneous phase-pure Ir1–x Ru x O2 nanocrystals. The solid solution nanocrystals can be obtained with a tunable composition of 0.2 &lt; x &lt; 1.0 and with ultra-small coherently scattering crystalline domains estimated from 1.3 to 2.6 nm in diameter based on PDF refinements. The in situ X-ray scattering data reveal a two-step formation mechanism, which involves the initial loss of chloride ligands followed by the formation of metal–oxygen octahedra clusters containing both Ir and Ru. These octahedra assemble with time resulting in long-range order resembling the rutile structure. The mixing of the metals on the atomic scale during the crystal formation presumably allows the formation of the solid solution rather than heterogeneous mixtures. The size of the final nanocrystals can be controlled by tuning the synthesis temperature. The facile hydrothermal synthesis route provides ultra-small nanoparticles with activity toward the OER in acidic electrolytes comparable to the best in the literature, and the optimal material composition very favorably combines low overpotential, high mass activity, and increased stability.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.4c04607</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Journal of the American Chemical Society, 2024-08, Vol.146 (34), p.23729-23740</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-2097-063X ; 0000-0001-5507-9615 ; 0000-0002-4632-1024 ; 0000-0003-1296-1151</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jacs.4c04607$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jacs.4c04607$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Bertelsen, Andreas Dueholm</creatorcontrib><creatorcontrib>Kløve, Magnus</creatorcontrib><creatorcontrib>Broge, Nils Lau Nyborg</creatorcontrib><creatorcontrib>Bondesgaard, Martin</creatorcontrib><creatorcontrib>Stubkjær, Rasmus Baden</creatorcontrib><creatorcontrib>Dippel, Ann-Christin</creatorcontrib><creatorcontrib>Li, Qinyu</creatorcontrib><creatorcontrib>Tilley, Richard</creatorcontrib><creatorcontrib>Vogel Jørgensen, Mads Ry</creatorcontrib><creatorcontrib>Iversen, Bo Brummerstedt</creatorcontrib><title>Formation Mechanism and Hydrothermal Synthesis of Highly Active Ir1–x Ru x O2 Nanoparticles for the Oxygen Evolution Reaction</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>Iridium dioxide (IrO2), ruthenium dioxide (RuO2), and their solid solutions (Ir1–x Ru x O2) are very active electrocatalysts for the oxygen evolution reaction (OER). Efficient and facile synthesis of nanosized crystallites of these materials is of high significance for electrocatalytic applications for converting green energy to fuels (power-to-X). Here, we use in situ X-ray scattering to examine reaction conditions for different Ir and Ru precursors resulting in the development of a simple hydrothermal synthesis route using IrCl3 and KRuO4 to obtain homogeneous phase-pure Ir1–x Ru x O2 nanocrystals. The solid solution nanocrystals can be obtained with a tunable composition of 0.2 &lt; x &lt; 1.0 and with ultra-small coherently scattering crystalline domains estimated from 1.3 to 2.6 nm in diameter based on PDF refinements. The in situ X-ray scattering data reveal a two-step formation mechanism, which involves the initial loss of chloride ligands followed by the formation of metal–oxygen octahedra clusters containing both Ir and Ru. These octahedra assemble with time resulting in long-range order resembling the rutile structure. The mixing of the metals on the atomic scale during the crystal formation presumably allows the formation of the solid solution rather than heterogeneous mixtures. The size of the final nanocrystals can be controlled by tuning the synthesis temperature. The facile hydrothermal synthesis route provides ultra-small nanoparticles with activity toward the OER in acidic electrolytes comparable to the best in the literature, and the optimal material composition very favorably combines low overpotential, high mass activity, and increased stability.</description><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNotkEFOwzAQRS0EEqWw4wCzZJMytlM7WVZVSysVKhVYR47jtKlSG8Vp1azgDtyQk-BCV_NHM_9_6RFyT3FAkdHHrdJ-EGuMBcoL0qNDhtGQMnFJeojIIpkIfk1uvN-GNWYJ7ZHPqWt2qq2chWejN8pWfgfKFjDrisa1GxOuNbx2NkhfeXAlzKr1pu5gpNvqYGDe0J-v7yOs9nCEJYMXZd2HatpK18ZD6RoITlgeu7WxMDm4ev9XtjJKn8QtuSpV7c3defbJ-3TyNp5Fi-XTfDxaRIrSpI1SjkzLNOexTlmKNEl1jpTTQuclQ5EwIUUpSxEbTFKlRYGYc2q0DC-xLIe8Tx7-cwOibOv2jQ1tGcXsBC47gcvO4PgvS0xjAg</recordid><startdate>20240828</startdate><enddate>20240828</enddate><creator>Bertelsen, Andreas Dueholm</creator><creator>Kløve, Magnus</creator><creator>Broge, Nils Lau Nyborg</creator><creator>Bondesgaard, Martin</creator><creator>Stubkjær, Rasmus Baden</creator><creator>Dippel, Ann-Christin</creator><creator>Li, Qinyu</creator><creator>Tilley, Richard</creator><creator>Vogel Jørgensen, Mads Ry</creator><creator>Iversen, Bo Brummerstedt</creator><general>American Chemical Society</general><scope/><orcidid>https://orcid.org/0000-0003-2097-063X</orcidid><orcidid>https://orcid.org/0000-0001-5507-9615</orcidid><orcidid>https://orcid.org/0000-0002-4632-1024</orcidid><orcidid>https://orcid.org/0000-0003-1296-1151</orcidid></search><sort><creationdate>20240828</creationdate><title>Formation Mechanism and Hydrothermal Synthesis of Highly Active Ir1–x Ru x O2 Nanoparticles for the Oxygen Evolution Reaction</title><author>Bertelsen, Andreas Dueholm ; Kløve, Magnus ; Broge, Nils Lau Nyborg ; Bondesgaard, Martin ; Stubkjær, Rasmus Baden ; Dippel, Ann-Christin ; Li, Qinyu ; Tilley, Richard ; Vogel Jørgensen, Mads Ry ; Iversen, Bo Brummerstedt</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a118t-9302c79b34c9290189cb0131dcbf20682676f7f64e089ac6d00b31ec731d47f53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bertelsen, Andreas Dueholm</creatorcontrib><creatorcontrib>Kløve, Magnus</creatorcontrib><creatorcontrib>Broge, Nils Lau Nyborg</creatorcontrib><creatorcontrib>Bondesgaard, Martin</creatorcontrib><creatorcontrib>Stubkjær, Rasmus Baden</creatorcontrib><creatorcontrib>Dippel, Ann-Christin</creatorcontrib><creatorcontrib>Li, Qinyu</creatorcontrib><creatorcontrib>Tilley, Richard</creatorcontrib><creatorcontrib>Vogel Jørgensen, Mads Ry</creatorcontrib><creatorcontrib>Iversen, Bo Brummerstedt</creatorcontrib><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bertelsen, Andreas Dueholm</au><au>Kløve, Magnus</au><au>Broge, Nils Lau Nyborg</au><au>Bondesgaard, Martin</au><au>Stubkjær, Rasmus Baden</au><au>Dippel, Ann-Christin</au><au>Li, Qinyu</au><au>Tilley, Richard</au><au>Vogel Jørgensen, Mads Ry</au><au>Iversen, Bo Brummerstedt</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Formation Mechanism and Hydrothermal Synthesis of Highly Active Ir1–x Ru x O2 Nanoparticles for the Oxygen Evolution Reaction</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2024-08-28</date><risdate>2024</risdate><volume>146</volume><issue>34</issue><spage>23729</spage><epage>23740</epage><pages>23729-23740</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>Iridium dioxide (IrO2), ruthenium dioxide (RuO2), and their solid solutions (Ir1–x Ru x O2) are very active electrocatalysts for the oxygen evolution reaction (OER). Efficient and facile synthesis of nanosized crystallites of these materials is of high significance for electrocatalytic applications for converting green energy to fuels (power-to-X). Here, we use in situ X-ray scattering to examine reaction conditions for different Ir and Ru precursors resulting in the development of a simple hydrothermal synthesis route using IrCl3 and KRuO4 to obtain homogeneous phase-pure Ir1–x Ru x O2 nanocrystals. The solid solution nanocrystals can be obtained with a tunable composition of 0.2 &lt; x &lt; 1.0 and with ultra-small coherently scattering crystalline domains estimated from 1.3 to 2.6 nm in diameter based on PDF refinements. The in situ X-ray scattering data reveal a two-step formation mechanism, which involves the initial loss of chloride ligands followed by the formation of metal–oxygen octahedra clusters containing both Ir and Ru. These octahedra assemble with time resulting in long-range order resembling the rutile structure. The mixing of the metals on the atomic scale during the crystal formation presumably allows the formation of the solid solution rather than heterogeneous mixtures. The size of the final nanocrystals can be controlled by tuning the synthesis temperature. The facile hydrothermal synthesis route provides ultra-small nanoparticles with activity toward the OER in acidic electrolytes comparable to the best in the literature, and the optimal material composition very favorably combines low overpotential, high mass activity, and increased stability.</abstract><pub>American Chemical Society</pub><doi>10.1021/jacs.4c04607</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-2097-063X</orcidid><orcidid>https://orcid.org/0000-0001-5507-9615</orcidid><orcidid>https://orcid.org/0000-0002-4632-1024</orcidid><orcidid>https://orcid.org/0000-0003-1296-1151</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 2024-08, Vol.146 (34), p.23729-23740
issn 0002-7863
1520-5126
language eng
recordid cdi_acs_journals_10_1021_jacs_4c04607
source ACS Publications
title Formation Mechanism and Hydrothermal Synthesis of Highly Active Ir1–x Ru x O2 Nanoparticles for the Oxygen Evolution Reaction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T10%3A10%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Formation%20Mechanism%20and%20Hydrothermal%20Synthesis%20of%20Highly%20Active%20Ir1%E2%80%93x%20Ru%20x%20O2%20Nanoparticles%20for%20the%20Oxygen%20Evolution%20Reaction&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Bertelsen,%20Andreas%20Dueholm&rft.date=2024-08-28&rft.volume=146&rft.issue=34&rft.spage=23729&rft.epage=23740&rft.pages=23729-23740&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.4c04607&rft_dat=%3Cacs%3Eb641128702%3C/acs%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true