Hierarchically Porous Monolithic LiFePO4/Carbon Composite Electrode Materials for High Power Lithium Ion Batteries

A novel method for the preparation of hierarchically porous LiFePO4 electrode materials for lithium ion batteries has been investigated. A meso/macroporous carbon monolith, a conductive framework, was prepared and infiltrated with the LiFePO4 precursors to increase the electrode/electrolyte interfac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry of materials 2009-11, Vol.21 (21), p.5300-5306
Hauptverfasser: Doherty, Cara M, Caruso, Rachel A, Smarsly, Bernd M, Adelhelm, Philipp, Drummond, Calum J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5306
container_issue 21
container_start_page 5300
container_title Chemistry of materials
container_volume 21
creator Doherty, Cara M
Caruso, Rachel A
Smarsly, Bernd M
Adelhelm, Philipp
Drummond, Calum J
description A novel method for the preparation of hierarchically porous LiFePO4 electrode materials for lithium ion batteries has been investigated. A meso/macroporous carbon monolith, a conductive framework, was prepared and infiltrated with the LiFePO4 precursors to increase the electrode/electrolyte interface and improve the rate capability of the battery. The final LiFePO4/carbon monoliths feature a meso/macroporous hierarchical structure. The monoliths were calcined at increasing temperatures, from 650 to 800 °C, to determine the structural and sintering effects on the electrochemical properties of the materials. The samples were characterized using SEM, TEM, nitrogen sorption, and XRD analysis prior to electrochemical testing. The results showed that the capacity of the LiFePO4/carbon electrodes achieved 82% of the theoretical capacity at 0.1C discharge rate.
doi_str_mv 10.1021/cm9024167
format Article
fullrecord <record><control><sourceid>acs</sourceid><recordid>TN_cdi_acs_journals_10_1021_cm9024167</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>d208642936</sourcerecordid><originalsourceid>FETCH-LOGICAL-a251t-ec698df4bee7e7248f2ad3c249df1e3a1357be09beef40656d115e9c46c0b49a3</originalsourceid><addsrcrecordid>eNo9kE1LxDAQhoMouK4e_Ae5eKw7SZO2OWrZL-iye9BzSdOpm6XdSNIi_nuzKJ4GZp73GXgJeWTwzICzhRkUcMGy_IrMmOSQSAB-TWZQqDwRucxuyV0IJwAW8WJG_Mai194crdF9_00Pzrsp0J07u96OcUsru8LDXixK7Rt3pqUbPl2wI9Jlj2b0rkW60yN6q_tAO-fpxn4co-cLfcxGxTTQbQy-6vFCYbgnN11k8eFvzsn7avlWbpJqv96WL1WiuWRjgiZTRduJBjHHnIui47pNDReq7RimmqUybxBUvHcCMpm1jElURmQGGqF0OidPv15tQn1ykz_HbzWD-lJU_V9U-gMmQlyJ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Hierarchically Porous Monolithic LiFePO4/Carbon Composite Electrode Materials for High Power Lithium Ion Batteries</title><source>American Chemical Society Journals</source><creator>Doherty, Cara M ; Caruso, Rachel A ; Smarsly, Bernd M ; Adelhelm, Philipp ; Drummond, Calum J</creator><creatorcontrib>Doherty, Cara M ; Caruso, Rachel A ; Smarsly, Bernd M ; Adelhelm, Philipp ; Drummond, Calum J</creatorcontrib><description>A novel method for the preparation of hierarchically porous LiFePO4 electrode materials for lithium ion batteries has been investigated. A meso/macroporous carbon monolith, a conductive framework, was prepared and infiltrated with the LiFePO4 precursors to increase the electrode/electrolyte interface and improve the rate capability of the battery. The final LiFePO4/carbon monoliths feature a meso/macroporous hierarchical structure. The monoliths were calcined at increasing temperatures, from 650 to 800 °C, to determine the structural and sintering effects on the electrochemical properties of the materials. The samples were characterized using SEM, TEM, nitrogen sorption, and XRD analysis prior to electrochemical testing. The results showed that the capacity of the LiFePO4/carbon electrodes achieved 82% of the theoretical capacity at 0.1C discharge rate.</description><identifier>ISSN: 0897-4756</identifier><identifier>EISSN: 1520-5002</identifier><identifier>DOI: 10.1021/cm9024167</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Characterization of Materials ; Electrochemistry ; Porous Materials (including Meso- and Micro-Porous Materials)</subject><ispartof>Chemistry of materials, 2009-11, Vol.21 (21), p.5300-5306</ispartof><rights>Copyright © 2009 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/cm9024167$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/cm9024167$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,27055,27903,27904,56716,56766</link.rule.ids></links><search><creatorcontrib>Doherty, Cara M</creatorcontrib><creatorcontrib>Caruso, Rachel A</creatorcontrib><creatorcontrib>Smarsly, Bernd M</creatorcontrib><creatorcontrib>Adelhelm, Philipp</creatorcontrib><creatorcontrib>Drummond, Calum J</creatorcontrib><title>Hierarchically Porous Monolithic LiFePO4/Carbon Composite Electrode Materials for High Power Lithium Ion Batteries</title><title>Chemistry of materials</title><addtitle>Chem. Mater</addtitle><description>A novel method for the preparation of hierarchically porous LiFePO4 electrode materials for lithium ion batteries has been investigated. A meso/macroporous carbon monolith, a conductive framework, was prepared and infiltrated with the LiFePO4 precursors to increase the electrode/electrolyte interface and improve the rate capability of the battery. The final LiFePO4/carbon monoliths feature a meso/macroporous hierarchical structure. The monoliths were calcined at increasing temperatures, from 650 to 800 °C, to determine the structural and sintering effects on the electrochemical properties of the materials. The samples were characterized using SEM, TEM, nitrogen sorption, and XRD analysis prior to electrochemical testing. The results showed that the capacity of the LiFePO4/carbon electrodes achieved 82% of the theoretical capacity at 0.1C discharge rate.</description><subject>Characterization of Materials</subject><subject>Electrochemistry</subject><subject>Porous Materials (including Meso- and Micro-Porous Materials)</subject><issn>0897-4756</issn><issn>1520-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNo9kE1LxDAQhoMouK4e_Ae5eKw7SZO2OWrZL-iye9BzSdOpm6XdSNIi_nuzKJ4GZp73GXgJeWTwzICzhRkUcMGy_IrMmOSQSAB-TWZQqDwRucxuyV0IJwAW8WJG_Mai194crdF9_00Pzrsp0J07u96OcUsru8LDXixK7Rt3pqUbPl2wI9Jlj2b0rkW60yN6q_tAO-fpxn4co-cLfcxGxTTQbQy-6vFCYbgnN11k8eFvzsn7avlWbpJqv96WL1WiuWRjgiZTRduJBjHHnIui47pNDReq7RimmqUybxBUvHcCMpm1jElURmQGGqF0OidPv15tQn1ykz_HbzWD-lJU_V9U-gMmQlyJ</recordid><startdate>20091110</startdate><enddate>20091110</enddate><creator>Doherty, Cara M</creator><creator>Caruso, Rachel A</creator><creator>Smarsly, Bernd M</creator><creator>Adelhelm, Philipp</creator><creator>Drummond, Calum J</creator><general>American Chemical Society</general><scope/></search><sort><creationdate>20091110</creationdate><title>Hierarchically Porous Monolithic LiFePO4/Carbon Composite Electrode Materials for High Power Lithium Ion Batteries</title><author>Doherty, Cara M ; Caruso, Rachel A ; Smarsly, Bernd M ; Adelhelm, Philipp ; Drummond, Calum J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a251t-ec698df4bee7e7248f2ad3c249df1e3a1357be09beef40656d115e9c46c0b49a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Characterization of Materials</topic><topic>Electrochemistry</topic><topic>Porous Materials (including Meso- and Micro-Porous Materials)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Doherty, Cara M</creatorcontrib><creatorcontrib>Caruso, Rachel A</creatorcontrib><creatorcontrib>Smarsly, Bernd M</creatorcontrib><creatorcontrib>Adelhelm, Philipp</creatorcontrib><creatorcontrib>Drummond, Calum J</creatorcontrib><jtitle>Chemistry of materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Doherty, Cara M</au><au>Caruso, Rachel A</au><au>Smarsly, Bernd M</au><au>Adelhelm, Philipp</au><au>Drummond, Calum J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hierarchically Porous Monolithic LiFePO4/Carbon Composite Electrode Materials for High Power Lithium Ion Batteries</atitle><jtitle>Chemistry of materials</jtitle><addtitle>Chem. Mater</addtitle><date>2009-11-10</date><risdate>2009</risdate><volume>21</volume><issue>21</issue><spage>5300</spage><epage>5306</epage><pages>5300-5306</pages><issn>0897-4756</issn><eissn>1520-5002</eissn><abstract>A novel method for the preparation of hierarchically porous LiFePO4 electrode materials for lithium ion batteries has been investigated. A meso/macroporous carbon monolith, a conductive framework, was prepared and infiltrated with the LiFePO4 precursors to increase the electrode/electrolyte interface and improve the rate capability of the battery. The final LiFePO4/carbon monoliths feature a meso/macroporous hierarchical structure. The monoliths were calcined at increasing temperatures, from 650 to 800 °C, to determine the structural and sintering effects on the electrochemical properties of the materials. The samples were characterized using SEM, TEM, nitrogen sorption, and XRD analysis prior to electrochemical testing. The results showed that the capacity of the LiFePO4/carbon electrodes achieved 82% of the theoretical capacity at 0.1C discharge rate.</abstract><pub>American Chemical Society</pub><doi>10.1021/cm9024167</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0897-4756
ispartof Chemistry of materials, 2009-11, Vol.21 (21), p.5300-5306
issn 0897-4756
1520-5002
language eng
recordid cdi_acs_journals_10_1021_cm9024167
source American Chemical Society Journals
subjects Characterization of Materials
Electrochemistry
Porous Materials (including Meso- and Micro-Porous Materials)
title Hierarchically Porous Monolithic LiFePO4/Carbon Composite Electrode Materials for High Power Lithium Ion Batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T07%3A07%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hierarchically%20Porous%20Monolithic%20LiFePO4/Carbon%20Composite%20Electrode%20Materials%20for%20High%20Power%20Lithium%20Ion%20Batteries&rft.jtitle=Chemistry%20of%20materials&rft.au=Doherty,%20Cara%20M&rft.date=2009-11-10&rft.volume=21&rft.issue=21&rft.spage=5300&rft.epage=5306&rft.pages=5300-5306&rft.issn=0897-4756&rft.eissn=1520-5002&rft_id=info:doi/10.1021/cm9024167&rft_dat=%3Cacs%3Ed208642936%3C/acs%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true