Mechanistic Study of the Nanoscale Negative-Tone Pattern Transfer from DNA Nanostructures to SiO2

We report a mechanistic study of a DNA-mediated vapor phase HF etching of SiO2. The kinetics of SiO2 etching was studied as a function of the reaction temperature, time, and partial pressures of H2O, HF, and 2-propanol. Our results show that DNA locally increases the etching rate of SiO2 by promotin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry of materials 2015-03, Vol.27 (5), p.1692-1698
Hauptverfasser: Zhou, Feng, Michael, Brian, Surwade, Sumedh P, Ricardo, Karen B, Zhao, Shichao, Liu, Haitao
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1698
container_issue 5
container_start_page 1692
container_title Chemistry of materials
container_volume 27
creator Zhou, Feng
Michael, Brian
Surwade, Sumedh P
Ricardo, Karen B
Zhao, Shichao
Liu, Haitao
description We report a mechanistic study of a DNA-mediated vapor phase HF etching of SiO2. The kinetics of SiO2 etching was studied as a function of the reaction temperature, time, and partial pressures of H2O, HF, and 2-propanol. Our results show that DNA locally increases the etching rate of SiO2 by promoting the adsorption of water and that the enhancement effect mostly originates from the organic components of DNA. On the basis of the mechanistic studies, we identified conditions for high-contrast (>10 nm deep), high-resolution (∼10 nm) pattern transfers to SiO2 from DNA nanostructures as well as individual double-stranded DNA. These SiO2 patterns were used as a hard mask for plasma etching of Si to produce even higher-contrast patterns that are comparable to those obtained by electron-beam lithography.
doi_str_mv 10.1021/cm5044914
format Article
fullrecord <record><control><sourceid>acs</sourceid><recordid>TN_cdi_acs_journals_10_1021_cm5044914</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b506705224</sourcerecordid><originalsourceid>FETCH-LOGICAL-a251t-8b2b5aabb80fc46c9171bd9312c6356b62ca98dc885e14ae23891adfc3821a5b3</originalsourceid><addsrcrecordid>eNo9kE9LwzAYxoMoWKcHv0EuHqt506ZNjmPqFOYmrJ7LmzR1HVsCSSr47a1MPD3P4fkDP0Jugd0D4_BgjoKVpYLyjGQgOMsFY_ycZEyqOi9rUV2Sqxj3jMEUlxnBN2t26IaYBkO3aey-qe9p2lm6RuejwcPk7Cem4cvmjXeWvmNKNjjaBHSxt4H2wR_p43p-aqQwmjQGG2nydDts-DW56PEQ7c2fzsjH81OzeMlXm-XrYr7KkQtIudRcC0StJetNWRkFNehOFcBNVYhKV9ygkp2RUlgo0fJCKsCuN4XkgEIXM3J32kUT270fg5veWmDtL5f2n0vxA-jlVXw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Mechanistic Study of the Nanoscale Negative-Tone Pattern Transfer from DNA Nanostructures to SiO2</title><source>ACS Publications</source><creator>Zhou, Feng ; Michael, Brian ; Surwade, Sumedh P ; Ricardo, Karen B ; Zhao, Shichao ; Liu, Haitao</creator><creatorcontrib>Zhou, Feng ; Michael, Brian ; Surwade, Sumedh P ; Ricardo, Karen B ; Zhao, Shichao ; Liu, Haitao</creatorcontrib><description>We report a mechanistic study of a DNA-mediated vapor phase HF etching of SiO2. The kinetics of SiO2 etching was studied as a function of the reaction temperature, time, and partial pressures of H2O, HF, and 2-propanol. Our results show that DNA locally increases the etching rate of SiO2 by promoting the adsorption of water and that the enhancement effect mostly originates from the organic components of DNA. On the basis of the mechanistic studies, we identified conditions for high-contrast (&gt;10 nm deep), high-resolution (∼10 nm) pattern transfers to SiO2 from DNA nanostructures as well as individual double-stranded DNA. These SiO2 patterns were used as a hard mask for plasma etching of Si to produce even higher-contrast patterns that are comparable to those obtained by electron-beam lithography.</description><identifier>ISSN: 0897-4756</identifier><identifier>EISSN: 1520-5002</identifier><identifier>DOI: 10.1021/cm5044914</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Chemistry of materials, 2015-03, Vol.27 (5), p.1692-1698</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/cm5044914$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/cm5044914$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Zhou, Feng</creatorcontrib><creatorcontrib>Michael, Brian</creatorcontrib><creatorcontrib>Surwade, Sumedh P</creatorcontrib><creatorcontrib>Ricardo, Karen B</creatorcontrib><creatorcontrib>Zhao, Shichao</creatorcontrib><creatorcontrib>Liu, Haitao</creatorcontrib><title>Mechanistic Study of the Nanoscale Negative-Tone Pattern Transfer from DNA Nanostructures to SiO2</title><title>Chemistry of materials</title><addtitle>Chem. Mater</addtitle><description>We report a mechanistic study of a DNA-mediated vapor phase HF etching of SiO2. The kinetics of SiO2 etching was studied as a function of the reaction temperature, time, and partial pressures of H2O, HF, and 2-propanol. Our results show that DNA locally increases the etching rate of SiO2 by promoting the adsorption of water and that the enhancement effect mostly originates from the organic components of DNA. On the basis of the mechanistic studies, we identified conditions for high-contrast (&gt;10 nm deep), high-resolution (∼10 nm) pattern transfers to SiO2 from DNA nanostructures as well as individual double-stranded DNA. These SiO2 patterns were used as a hard mask for plasma etching of Si to produce even higher-contrast patterns that are comparable to those obtained by electron-beam lithography.</description><issn>0897-4756</issn><issn>1520-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNo9kE9LwzAYxoMoWKcHv0EuHqt506ZNjmPqFOYmrJ7LmzR1HVsCSSr47a1MPD3P4fkDP0Jugd0D4_BgjoKVpYLyjGQgOMsFY_ycZEyqOi9rUV2Sqxj3jMEUlxnBN2t26IaYBkO3aey-qe9p2lm6RuejwcPk7Cem4cvmjXeWvmNKNjjaBHSxt4H2wR_p43p-aqQwmjQGG2nydDts-DW56PEQ7c2fzsjH81OzeMlXm-XrYr7KkQtIudRcC0StJetNWRkFNehOFcBNVYhKV9ygkp2RUlgo0fJCKsCuN4XkgEIXM3J32kUT270fg5veWmDtL5f2n0vxA-jlVXw</recordid><startdate>20150310</startdate><enddate>20150310</enddate><creator>Zhou, Feng</creator><creator>Michael, Brian</creator><creator>Surwade, Sumedh P</creator><creator>Ricardo, Karen B</creator><creator>Zhao, Shichao</creator><creator>Liu, Haitao</creator><general>American Chemical Society</general><scope/></search><sort><creationdate>20150310</creationdate><title>Mechanistic Study of the Nanoscale Negative-Tone Pattern Transfer from DNA Nanostructures to SiO2</title><author>Zhou, Feng ; Michael, Brian ; Surwade, Sumedh P ; Ricardo, Karen B ; Zhao, Shichao ; Liu, Haitao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a251t-8b2b5aabb80fc46c9171bd9312c6356b62ca98dc885e14ae23891adfc3821a5b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Feng</creatorcontrib><creatorcontrib>Michael, Brian</creatorcontrib><creatorcontrib>Surwade, Sumedh P</creatorcontrib><creatorcontrib>Ricardo, Karen B</creatorcontrib><creatorcontrib>Zhao, Shichao</creatorcontrib><creatorcontrib>Liu, Haitao</creatorcontrib><jtitle>Chemistry of materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Feng</au><au>Michael, Brian</au><au>Surwade, Sumedh P</au><au>Ricardo, Karen B</au><au>Zhao, Shichao</au><au>Liu, Haitao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanistic Study of the Nanoscale Negative-Tone Pattern Transfer from DNA Nanostructures to SiO2</atitle><jtitle>Chemistry of materials</jtitle><addtitle>Chem. Mater</addtitle><date>2015-03-10</date><risdate>2015</risdate><volume>27</volume><issue>5</issue><spage>1692</spage><epage>1698</epage><pages>1692-1698</pages><issn>0897-4756</issn><eissn>1520-5002</eissn><abstract>We report a mechanistic study of a DNA-mediated vapor phase HF etching of SiO2. The kinetics of SiO2 etching was studied as a function of the reaction temperature, time, and partial pressures of H2O, HF, and 2-propanol. Our results show that DNA locally increases the etching rate of SiO2 by promoting the adsorption of water and that the enhancement effect mostly originates from the organic components of DNA. On the basis of the mechanistic studies, we identified conditions for high-contrast (&gt;10 nm deep), high-resolution (∼10 nm) pattern transfers to SiO2 from DNA nanostructures as well as individual double-stranded DNA. These SiO2 patterns were used as a hard mask for plasma etching of Si to produce even higher-contrast patterns that are comparable to those obtained by electron-beam lithography.</abstract><pub>American Chemical Society</pub><doi>10.1021/cm5044914</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0897-4756
ispartof Chemistry of materials, 2015-03, Vol.27 (5), p.1692-1698
issn 0897-4756
1520-5002
language eng
recordid cdi_acs_journals_10_1021_cm5044914
source ACS Publications
title Mechanistic Study of the Nanoscale Negative-Tone Pattern Transfer from DNA Nanostructures to SiO2
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T11%3A06%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanistic%20Study%20of%20the%20Nanoscale%20Negative-Tone%20Pattern%20Transfer%20from%20DNA%20Nanostructures%20to%20SiO2&rft.jtitle=Chemistry%20of%20materials&rft.au=Zhou,%20Feng&rft.date=2015-03-10&rft.volume=27&rft.issue=5&rft.spage=1692&rft.epage=1698&rft.pages=1692-1698&rft.issn=0897-4756&rft.eissn=1520-5002&rft_id=info:doi/10.1021/cm5044914&rft_dat=%3Cacs%3Eb506705224%3C/acs%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true