High Capacity O3-Type Na[Li0.05(Ni0.25Fe0.25Mn0.5)0.95]O2 Cathode for Sodium Ion Batteries

In this work we report Na­[Li0.05(Ni0.25Fe0.25Mn0.5)0.95]­O2 layered cathode materials that were synthesized via a coprecipitation method. The Na­[Li0.05(Ni0.25Fe0.25Mn0.5)0.95]­O2 electrode exhibited an exceptionally high capacity (180.1 mA h g–1 at 0.1 C-rate) as well as excellent capacity retenti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry of materials 2014-11, Vol.26 (21), p.6165-6171
Hauptverfasser: Oh, Seung-Min, Myung, Seung-Taek, Hwang, Jang-Yeon, Scrosati, Bruno, Amine, Khalil, Sun, Yang-Kook
Format: Artikel
Sprache:eng ; jpn
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6171
container_issue 21
container_start_page 6165
container_title Chemistry of materials
container_volume 26
creator Oh, Seung-Min
Myung, Seung-Taek
Hwang, Jang-Yeon
Scrosati, Bruno
Amine, Khalil
Sun, Yang-Kook
description In this work we report Na­[Li0.05(Ni0.25Fe0.25Mn0.5)0.95]­O2 layered cathode materials that were synthesized via a coprecipitation method. The Na­[Li0.05(Ni0.25Fe0.25Mn0.5)0.95]­O2 electrode exhibited an exceptionally high capacity (180.1 mA h g–1 at 0.1 C-rate) as well as excellent capacity retentions (0.2 C-rate: 89.6%, 0.5 C-rate: 92.1%) and rate capabilities at various C-rates (0.1 C-rate: 180.1 mA h g–1, 1 C-rate: 130.9 mA h g–1, 5 C-rate: 96.2 mA h g–1), which were achieved due to the Li supporting structural stabilization by introduction into the transition metal layer. By contrast, the electrode performance of the lithium-free Na­[Ni0.25Fe0.25Mn0.5]­O2 cathode was inferior because of structural disintegration presumably resulting from Fe3+ migration from the transition metal layer to the Na layer during cycling. The long-term cycling using a full cell consisting of a Na­[Li0.05(Ni0.25Fe0.25Mn0.5)0.95]­O2 cathode was coupled with a hard carbon anode which exhibited promising cycling data including a 76% capacity retention over 200 cycles.
doi_str_mv 10.1021/cm502481b
format Article
fullrecord <record><control><sourceid>acs</sourceid><recordid>TN_cdi_acs_journals_10_1021_cm502481b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>g07574973</sourcerecordid><originalsourceid>FETCH-LOGICAL-a166t-ceeb5f7a83461cc9240dd57113b2c2fd9b7e63fa977f0257bba4b604120a7a1e3</originalsourceid><addsrcrecordid>eNo9kL1OwzAUhS0EEqEw8AZekGBwuNeO7WSEiNJKoRkoCwhFtmPTVDSpmnTo25MKxHK-5fxIh5BrhBiB473bSOBJivaERCg5MAnAT0kEaaZZoqU6Jxd9vwbA0Z5G5H3WfK1obrbGNcOBloItD1tPF-ajaCAGebsYweXUH_WlhVjeQZzJz5KPoWHV1Z6Gbkdfu7rZb-i8a-mjGQa_a3x_Sc6C-e791R8n5G36tMxnrCif5_lDwQwqNTDnvZVBm1QkCp3LeAJ1LTWisNzxUGdWeyWCybQOwKW21iRWQYIcjDboxYTc_PYa11frbr9rx7UKoToeUv0fIn4AnOZOWw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>High Capacity O3-Type Na[Li0.05(Ni0.25Fe0.25Mn0.5)0.95]O2 Cathode for Sodium Ion Batteries</title><source>ACS Publications</source><creator>Oh, Seung-Min ; Myung, Seung-Taek ; Hwang, Jang-Yeon ; Scrosati, Bruno ; Amine, Khalil ; Sun, Yang-Kook</creator><creatorcontrib>Oh, Seung-Min ; Myung, Seung-Taek ; Hwang, Jang-Yeon ; Scrosati, Bruno ; Amine, Khalil ; Sun, Yang-Kook</creatorcontrib><description>In this work we report Na­[Li0.05(Ni0.25Fe0.25Mn0.5)0.95]­O2 layered cathode materials that were synthesized via a coprecipitation method. The Na­[Li0.05(Ni0.25Fe0.25Mn0.5)0.95]­O2 electrode exhibited an exceptionally high capacity (180.1 mA h g–1 at 0.1 C-rate) as well as excellent capacity retentions (0.2 C-rate: 89.6%, 0.5 C-rate: 92.1%) and rate capabilities at various C-rates (0.1 C-rate: 180.1 mA h g–1, 1 C-rate: 130.9 mA h g–1, 5 C-rate: 96.2 mA h g–1), which were achieved due to the Li supporting structural stabilization by introduction into the transition metal layer. By contrast, the electrode performance of the lithium-free Na­[Ni0.25Fe0.25Mn0.5]­O2 cathode was inferior because of structural disintegration presumably resulting from Fe3+ migration from the transition metal layer to the Na layer during cycling. The long-term cycling using a full cell consisting of a Na­[Li0.05(Ni0.25Fe0.25Mn0.5)0.95]­O2 cathode was coupled with a hard carbon anode which exhibited promising cycling data including a 76% capacity retention over 200 cycles.</description><identifier>ISSN: 0897-4756</identifier><identifier>EISSN: 1520-5002</identifier><identifier>DOI: 10.1021/cm502481b</identifier><language>eng ; jpn</language><publisher>American Chemical Society</publisher><ispartof>Chemistry of materials, 2014-11, Vol.26 (21), p.6165-6171</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/cm502481b$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/cm502481b$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,27055,27903,27904,56717,56767</link.rule.ids></links><search><creatorcontrib>Oh, Seung-Min</creatorcontrib><creatorcontrib>Myung, Seung-Taek</creatorcontrib><creatorcontrib>Hwang, Jang-Yeon</creatorcontrib><creatorcontrib>Scrosati, Bruno</creatorcontrib><creatorcontrib>Amine, Khalil</creatorcontrib><creatorcontrib>Sun, Yang-Kook</creatorcontrib><title>High Capacity O3-Type Na[Li0.05(Ni0.25Fe0.25Mn0.5)0.95]O2 Cathode for Sodium Ion Batteries</title><title>Chemistry of materials</title><addtitle>Chem. Mater</addtitle><description>In this work we report Na­[Li0.05(Ni0.25Fe0.25Mn0.5)0.95]­O2 layered cathode materials that were synthesized via a coprecipitation method. The Na­[Li0.05(Ni0.25Fe0.25Mn0.5)0.95]­O2 electrode exhibited an exceptionally high capacity (180.1 mA h g–1 at 0.1 C-rate) as well as excellent capacity retentions (0.2 C-rate: 89.6%, 0.5 C-rate: 92.1%) and rate capabilities at various C-rates (0.1 C-rate: 180.1 mA h g–1, 1 C-rate: 130.9 mA h g–1, 5 C-rate: 96.2 mA h g–1), which were achieved due to the Li supporting structural stabilization by introduction into the transition metal layer. By contrast, the electrode performance of the lithium-free Na­[Ni0.25Fe0.25Mn0.5]­O2 cathode was inferior because of structural disintegration presumably resulting from Fe3+ migration from the transition metal layer to the Na layer during cycling. The long-term cycling using a full cell consisting of a Na­[Li0.05(Ni0.25Fe0.25Mn0.5)0.95]­O2 cathode was coupled with a hard carbon anode which exhibited promising cycling data including a 76% capacity retention over 200 cycles.</description><issn>0897-4756</issn><issn>1520-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNo9kL1OwzAUhS0EEqEw8AZekGBwuNeO7WSEiNJKoRkoCwhFtmPTVDSpmnTo25MKxHK-5fxIh5BrhBiB473bSOBJivaERCg5MAnAT0kEaaZZoqU6Jxd9vwbA0Z5G5H3WfK1obrbGNcOBloItD1tPF-ajaCAGebsYweXUH_WlhVjeQZzJz5KPoWHV1Z6Gbkdfu7rZb-i8a-mjGQa_a3x_Sc6C-e791R8n5G36tMxnrCif5_lDwQwqNTDnvZVBm1QkCp3LeAJ1LTWisNzxUGdWeyWCybQOwKW21iRWQYIcjDboxYTc_PYa11frbr9rx7UKoToeUv0fIn4AnOZOWw</recordid><startdate>20141111</startdate><enddate>20141111</enddate><creator>Oh, Seung-Min</creator><creator>Myung, Seung-Taek</creator><creator>Hwang, Jang-Yeon</creator><creator>Scrosati, Bruno</creator><creator>Amine, Khalil</creator><creator>Sun, Yang-Kook</creator><general>American Chemical Society</general><scope/></search><sort><creationdate>20141111</creationdate><title>High Capacity O3-Type Na[Li0.05(Ni0.25Fe0.25Mn0.5)0.95]O2 Cathode for Sodium Ion Batteries</title><author>Oh, Seung-Min ; Myung, Seung-Taek ; Hwang, Jang-Yeon ; Scrosati, Bruno ; Amine, Khalil ; Sun, Yang-Kook</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a166t-ceeb5f7a83461cc9240dd57113b2c2fd9b7e63fa977f0257bba4b604120a7a1e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng ; jpn</language><creationdate>2014</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oh, Seung-Min</creatorcontrib><creatorcontrib>Myung, Seung-Taek</creatorcontrib><creatorcontrib>Hwang, Jang-Yeon</creatorcontrib><creatorcontrib>Scrosati, Bruno</creatorcontrib><creatorcontrib>Amine, Khalil</creatorcontrib><creatorcontrib>Sun, Yang-Kook</creatorcontrib><jtitle>Chemistry of materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oh, Seung-Min</au><au>Myung, Seung-Taek</au><au>Hwang, Jang-Yeon</au><au>Scrosati, Bruno</au><au>Amine, Khalil</au><au>Sun, Yang-Kook</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High Capacity O3-Type Na[Li0.05(Ni0.25Fe0.25Mn0.5)0.95]O2 Cathode for Sodium Ion Batteries</atitle><jtitle>Chemistry of materials</jtitle><addtitle>Chem. Mater</addtitle><date>2014-11-11</date><risdate>2014</risdate><volume>26</volume><issue>21</issue><spage>6165</spage><epage>6171</epage><pages>6165-6171</pages><issn>0897-4756</issn><eissn>1520-5002</eissn><abstract>In this work we report Na­[Li0.05(Ni0.25Fe0.25Mn0.5)0.95]­O2 layered cathode materials that were synthesized via a coprecipitation method. The Na­[Li0.05(Ni0.25Fe0.25Mn0.5)0.95]­O2 electrode exhibited an exceptionally high capacity (180.1 mA h g–1 at 0.1 C-rate) as well as excellent capacity retentions (0.2 C-rate: 89.6%, 0.5 C-rate: 92.1%) and rate capabilities at various C-rates (0.1 C-rate: 180.1 mA h g–1, 1 C-rate: 130.9 mA h g–1, 5 C-rate: 96.2 mA h g–1), which were achieved due to the Li supporting structural stabilization by introduction into the transition metal layer. By contrast, the electrode performance of the lithium-free Na­[Ni0.25Fe0.25Mn0.5]­O2 cathode was inferior because of structural disintegration presumably resulting from Fe3+ migration from the transition metal layer to the Na layer during cycling. The long-term cycling using a full cell consisting of a Na­[Li0.05(Ni0.25Fe0.25Mn0.5)0.95]­O2 cathode was coupled with a hard carbon anode which exhibited promising cycling data including a 76% capacity retention over 200 cycles.</abstract><pub>American Chemical Society</pub><doi>10.1021/cm502481b</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0897-4756
ispartof Chemistry of materials, 2014-11, Vol.26 (21), p.6165-6171
issn 0897-4756
1520-5002
language eng ; jpn
recordid cdi_acs_journals_10_1021_cm502481b
source ACS Publications
title High Capacity O3-Type Na[Li0.05(Ni0.25Fe0.25Mn0.5)0.95]O2 Cathode for Sodium Ion Batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T12%3A18%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20Capacity%20O3-Type%20Na%5BLi0.05(Ni0.25Fe0.25Mn0.5)0.95%5DO2%20Cathode%20for%20Sodium%20Ion%20Batteries&rft.jtitle=Chemistry%20of%20materials&rft.au=Oh,%20Seung-Min&rft.date=2014-11-11&rft.volume=26&rft.issue=21&rft.spage=6165&rft.epage=6171&rft.pages=6165-6171&rft.issn=0897-4756&rft.eissn=1520-5002&rft_id=info:doi/10.1021/cm502481b&rft_dat=%3Cacs%3Eg07574973%3C/acs%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true