Highly Efficient IR to NIR Upconversion in Gd2O2S: Er3+ for Photovoltaic Applications

Upconversion (UC) is a promising option to enhance the efficiency of solar cells by conversion of sub-bandgap infrared photons to higher energy photons that can be utilized by the solar cell. The UC quantum yield is a key parameter for a successful application. Here the UC luminescence properties of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry of materials 2013-05, Vol.25 (9), p.1912-1921
Hauptverfasser: Martín-Rodríguez, Rosa, Fischer, Stefan, Ivaturi, Aruna, Froehlich, Benjamin, Krämer, Karl W, Goldschmidt, Jan C, Richards, Bryce S, Meijerink, Andries
Format: Artikel
Sprache:eng ; jpn
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1921
container_issue 9
container_start_page 1912
container_title Chemistry of materials
container_volume 25
creator Martín-Rodríguez, Rosa
Fischer, Stefan
Ivaturi, Aruna
Froehlich, Benjamin
Krämer, Karl W
Goldschmidt, Jan C
Richards, Bryce S
Meijerink, Andries
description Upconversion (UC) is a promising option to enhance the efficiency of solar cells by conversion of sub-bandgap infrared photons to higher energy photons that can be utilized by the solar cell. The UC quantum yield is a key parameter for a successful application. Here the UC luminescence properties of Er3+-doped Gd2O2S are investigated by means of luminescence spectroscopy, quantum yield measurements, and excited state dynamics experiments. Excitation into the maximum of the 4I15/2 → 4I13/2 Er3+ absorption band around 1500 nm induces very efficient UC emission from different Er3+ excited states with energies above the silicon bandgap, in particular, the emission originating from the 4I11/2 state around 1000 nm. Concentration dependent studies reveal that the highest UC quantum yield is realized for a 10% Er3+-doping concentration. The UC luminescence is compared to the well-known Er3+-doped β-NaYF4 UC material for which the highest UC quantum yield has been reported for 25% Er3+. The UC internal quantum yields were measured in this work for Gd2O2S: 10%Er3+ and β-NaYF4: 25%Er3+ to be 12 ± 1% and 8.9 ± 0.7%, respectively, under monochromatic excitation around 1500 nm at a power of 700 W/m2. The UC quantum yield reported here for Gd2O2S: 10%Er3+ is the highest value achieved so far under monochromatic excitation into the 4I13/2 Er3+ level. Power dependence and lifetime measurements were performed to understand the mechanisms responsible for the efficient UC luminescence. We show that the main process yielding 4I11/2 UC emission is energy transfer UC.
doi_str_mv 10.1021/cm4005745
format Article
fullrecord <record><control><sourceid>acs</sourceid><recordid>TN_cdi_acs_journals_10_1021_cm4005745</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c330045544</sourcerecordid><originalsourceid>FETCH-LOGICAL-a181t-f5a1a1ebafdfb9a4fb1b7e4f95a3460d60a9e8309f93f7735000abb9eef92cfd3</originalsourceid><addsrcrecordid>eNo9kEFLwzAYhoMoWKcH_0EunqT6pWmaxtsYcxsMJ2rPJUnzuYzalKYO_PdWFE_v5eF9eR9CrhncMcjYvf3IAYTMxQlJmMggFQDZKUmgVDLNpSjOyUWMBwA24WVCqrV_37dfdInorXfdSDcvdAz0aYqqt6E7uiH60FHf0VWT7bLXB7oc-C3FMNDnfRjDMbSj9pbO-771Vo8THC_JGeo2uqu_nJHqcfm2WKfb3WqzmG9TzUo2pig008wZjQ0apXM0zEiXoxKa5wU0BWjlSg4KFUcp-fQFtDHKOVSZxYbPyM1vr7axPoTPoZvWagb1j4v63wX_BpkbUNI</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Highly Efficient IR to NIR Upconversion in Gd2O2S: Er3+ for Photovoltaic Applications</title><source>ACS Publications</source><creator>Martín-Rodríguez, Rosa ; Fischer, Stefan ; Ivaturi, Aruna ; Froehlich, Benjamin ; Krämer, Karl W ; Goldschmidt, Jan C ; Richards, Bryce S ; Meijerink, Andries</creator><creatorcontrib>Martín-Rodríguez, Rosa ; Fischer, Stefan ; Ivaturi, Aruna ; Froehlich, Benjamin ; Krämer, Karl W ; Goldschmidt, Jan C ; Richards, Bryce S ; Meijerink, Andries</creatorcontrib><description>Upconversion (UC) is a promising option to enhance the efficiency of solar cells by conversion of sub-bandgap infrared photons to higher energy photons that can be utilized by the solar cell. The UC quantum yield is a key parameter for a successful application. Here the UC luminescence properties of Er3+-doped Gd2O2S are investigated by means of luminescence spectroscopy, quantum yield measurements, and excited state dynamics experiments. Excitation into the maximum of the 4I15/2 → 4I13/2 Er3+ absorption band around 1500 nm induces very efficient UC emission from different Er3+ excited states with energies above the silicon bandgap, in particular, the emission originating from the 4I11/2 state around 1000 nm. Concentration dependent studies reveal that the highest UC quantum yield is realized for a 10% Er3+-doping concentration. The UC luminescence is compared to the well-known Er3+-doped β-NaYF4 UC material for which the highest UC quantum yield has been reported for 25% Er3+. The UC internal quantum yields were measured in this work for Gd2O2S: 10%Er3+ and β-NaYF4: 25%Er3+ to be 12 ± 1% and 8.9 ± 0.7%, respectively, under monochromatic excitation around 1500 nm at a power of 700 W/m2. The UC quantum yield reported here for Gd2O2S: 10%Er3+ is the highest value achieved so far under monochromatic excitation into the 4I13/2 Er3+ level. Power dependence and lifetime measurements were performed to understand the mechanisms responsible for the efficient UC luminescence. We show that the main process yielding 4I11/2 UC emission is energy transfer UC.</description><identifier>ISSN: 0897-4756</identifier><identifier>EISSN: 1520-5002</identifier><identifier>DOI: 10.1021/cm4005745</identifier><language>eng ; jpn</language><publisher>American Chemical Society</publisher><ispartof>Chemistry of materials, 2013-05, Vol.25 (9), p.1912-1921</ispartof><rights>Copyright © 2013 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/cm4005745$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/cm4005745$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Martín-Rodríguez, Rosa</creatorcontrib><creatorcontrib>Fischer, Stefan</creatorcontrib><creatorcontrib>Ivaturi, Aruna</creatorcontrib><creatorcontrib>Froehlich, Benjamin</creatorcontrib><creatorcontrib>Krämer, Karl W</creatorcontrib><creatorcontrib>Goldschmidt, Jan C</creatorcontrib><creatorcontrib>Richards, Bryce S</creatorcontrib><creatorcontrib>Meijerink, Andries</creatorcontrib><title>Highly Efficient IR to NIR Upconversion in Gd2O2S: Er3+ for Photovoltaic Applications</title><title>Chemistry of materials</title><addtitle>Chem. Mater</addtitle><description>Upconversion (UC) is a promising option to enhance the efficiency of solar cells by conversion of sub-bandgap infrared photons to higher energy photons that can be utilized by the solar cell. The UC quantum yield is a key parameter for a successful application. Here the UC luminescence properties of Er3+-doped Gd2O2S are investigated by means of luminescence spectroscopy, quantum yield measurements, and excited state dynamics experiments. Excitation into the maximum of the 4I15/2 → 4I13/2 Er3+ absorption band around 1500 nm induces very efficient UC emission from different Er3+ excited states with energies above the silicon bandgap, in particular, the emission originating from the 4I11/2 state around 1000 nm. Concentration dependent studies reveal that the highest UC quantum yield is realized for a 10% Er3+-doping concentration. The UC luminescence is compared to the well-known Er3+-doped β-NaYF4 UC material for which the highest UC quantum yield has been reported for 25% Er3+. The UC internal quantum yields were measured in this work for Gd2O2S: 10%Er3+ and β-NaYF4: 25%Er3+ to be 12 ± 1% and 8.9 ± 0.7%, respectively, under monochromatic excitation around 1500 nm at a power of 700 W/m2. The UC quantum yield reported here for Gd2O2S: 10%Er3+ is the highest value achieved so far under monochromatic excitation into the 4I13/2 Er3+ level. Power dependence and lifetime measurements were performed to understand the mechanisms responsible for the efficient UC luminescence. We show that the main process yielding 4I11/2 UC emission is energy transfer UC.</description><issn>0897-4756</issn><issn>1520-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNo9kEFLwzAYhoMoWKcH_0EunqT6pWmaxtsYcxsMJ2rPJUnzuYzalKYO_PdWFE_v5eF9eR9CrhncMcjYvf3IAYTMxQlJmMggFQDZKUmgVDLNpSjOyUWMBwA24WVCqrV_37dfdInorXfdSDcvdAz0aYqqt6E7uiH60FHf0VWT7bLXB7oc-C3FMNDnfRjDMbSj9pbO-771Vo8THC_JGeo2uqu_nJHqcfm2WKfb3WqzmG9TzUo2pig008wZjQ0apXM0zEiXoxKa5wU0BWjlSg4KFUcp-fQFtDHKOVSZxYbPyM1vr7axPoTPoZvWagb1j4v63wX_BpkbUNI</recordid><startdate>20130514</startdate><enddate>20130514</enddate><creator>Martín-Rodríguez, Rosa</creator><creator>Fischer, Stefan</creator><creator>Ivaturi, Aruna</creator><creator>Froehlich, Benjamin</creator><creator>Krämer, Karl W</creator><creator>Goldschmidt, Jan C</creator><creator>Richards, Bryce S</creator><creator>Meijerink, Andries</creator><general>American Chemical Society</general><scope/></search><sort><creationdate>20130514</creationdate><title>Highly Efficient IR to NIR Upconversion in Gd2O2S: Er3+ for Photovoltaic Applications</title><author>Martín-Rodríguez, Rosa ; Fischer, Stefan ; Ivaturi, Aruna ; Froehlich, Benjamin ; Krämer, Karl W ; Goldschmidt, Jan C ; Richards, Bryce S ; Meijerink, Andries</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a181t-f5a1a1ebafdfb9a4fb1b7e4f95a3460d60a9e8309f93f7735000abb9eef92cfd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng ; jpn</language><creationdate>2013</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Martín-Rodríguez, Rosa</creatorcontrib><creatorcontrib>Fischer, Stefan</creatorcontrib><creatorcontrib>Ivaturi, Aruna</creatorcontrib><creatorcontrib>Froehlich, Benjamin</creatorcontrib><creatorcontrib>Krämer, Karl W</creatorcontrib><creatorcontrib>Goldschmidt, Jan C</creatorcontrib><creatorcontrib>Richards, Bryce S</creatorcontrib><creatorcontrib>Meijerink, Andries</creatorcontrib><jtitle>Chemistry of materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Martín-Rodríguez, Rosa</au><au>Fischer, Stefan</au><au>Ivaturi, Aruna</au><au>Froehlich, Benjamin</au><au>Krämer, Karl W</au><au>Goldschmidt, Jan C</au><au>Richards, Bryce S</au><au>Meijerink, Andries</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Highly Efficient IR to NIR Upconversion in Gd2O2S: Er3+ for Photovoltaic Applications</atitle><jtitle>Chemistry of materials</jtitle><addtitle>Chem. Mater</addtitle><date>2013-05-14</date><risdate>2013</risdate><volume>25</volume><issue>9</issue><spage>1912</spage><epage>1921</epage><pages>1912-1921</pages><issn>0897-4756</issn><eissn>1520-5002</eissn><abstract>Upconversion (UC) is a promising option to enhance the efficiency of solar cells by conversion of sub-bandgap infrared photons to higher energy photons that can be utilized by the solar cell. The UC quantum yield is a key parameter for a successful application. Here the UC luminescence properties of Er3+-doped Gd2O2S are investigated by means of luminescence spectroscopy, quantum yield measurements, and excited state dynamics experiments. Excitation into the maximum of the 4I15/2 → 4I13/2 Er3+ absorption band around 1500 nm induces very efficient UC emission from different Er3+ excited states with energies above the silicon bandgap, in particular, the emission originating from the 4I11/2 state around 1000 nm. Concentration dependent studies reveal that the highest UC quantum yield is realized for a 10% Er3+-doping concentration. The UC luminescence is compared to the well-known Er3+-doped β-NaYF4 UC material for which the highest UC quantum yield has been reported for 25% Er3+. The UC internal quantum yields were measured in this work for Gd2O2S: 10%Er3+ and β-NaYF4: 25%Er3+ to be 12 ± 1% and 8.9 ± 0.7%, respectively, under monochromatic excitation around 1500 nm at a power of 700 W/m2. The UC quantum yield reported here for Gd2O2S: 10%Er3+ is the highest value achieved so far under monochromatic excitation into the 4I13/2 Er3+ level. Power dependence and lifetime measurements were performed to understand the mechanisms responsible for the efficient UC luminescence. We show that the main process yielding 4I11/2 UC emission is energy transfer UC.</abstract><pub>American Chemical Society</pub><doi>10.1021/cm4005745</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0897-4756
ispartof Chemistry of materials, 2013-05, Vol.25 (9), p.1912-1921
issn 0897-4756
1520-5002
language eng ; jpn
recordid cdi_acs_journals_10_1021_cm4005745
source ACS Publications
title Highly Efficient IR to NIR Upconversion in Gd2O2S: Er3+ for Photovoltaic Applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T23%3A29%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Highly%20Efficient%20IR%20to%20NIR%20Upconversion%20in%20Gd2O2S:%20Er3+%20for%20Photovoltaic%20Applications&rft.jtitle=Chemistry%20of%20materials&rft.au=Marti%CC%81n-Rodri%CC%81guez,%20Rosa&rft.date=2013-05-14&rft.volume=25&rft.issue=9&rft.spage=1912&rft.epage=1921&rft.pages=1912-1921&rft.issn=0897-4756&rft.eissn=1520-5002&rft_id=info:doi/10.1021/cm4005745&rft_dat=%3Cacs%3Ec330045544%3C/acs%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true