Oxygen-Deficient TiO2−δ Nanoparticles via Hydrogen Reduction for High Rate Capability Lithium Batteries

The interest of exploring environmentally benign and safe anode materials for lithium batteries has led to TiO2 (anatase) nanostructures as promising candidates. However, the poor chemical diffusion of lithium in the materials still limits the rate capability. We report on the high rate capability o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry of materials 2012-02, Vol.24 (3), p.543-551
Hauptverfasser: Shin, Ji-Yong, Joo, Jong Hoon, Samuelis, Dominik, Maier, Joachim
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 551
container_issue 3
container_start_page 543
container_title Chemistry of materials
container_volume 24
creator Shin, Ji-Yong
Joo, Jong Hoon
Samuelis, Dominik
Maier, Joachim
description The interest of exploring environmentally benign and safe anode materials for lithium batteries has led to TiO2 (anatase) nanostructures as promising candidates. However, the poor chemical diffusion of lithium in the materials still limits the rate capability. We report on the high rate capability of lithium storage with oxygen-deficient TiO2−δ nanoparticles prepared by hydrogen reduction. A systematic study on the effect of electronic charge carrier concentration on the overall electrochemical lithium storage performance revealed that well-balanced Li+/e– transport is the key factor for high-performance TiO2 anodes.
doi_str_mv 10.1021/cm2031009
format Article
fullrecord <record><control><sourceid>acs</sourceid><recordid>TN_cdi_acs_journals_10_1021_cm2031009</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c838694667</sourcerecordid><originalsourceid>FETCH-LOGICAL-a115t-72765e4f2070c53c5639e7efcad36ebaba4d58be53e11db4e1744f9faa0776c73</originalsourceid><addsrcrecordid>eNo9kEtOwzAURS0EEqUwYAeeMAw823GcDKF8glRRqSrj6MV5bl2lSZW4iOyAMWthHSyClVAEYnQnR_dIh7FzAZcCpLiyGwlKAGQHbCS0hEgDyEM2gjQzUWx0csxO-n4NIPZ4OmLr2euwpCa6JeetpybwhZ_Jr7f3zw_-hE27xS54W1PPXzzyfKi6do_zOVU7G3zbcNd2PPfLFZ9jID7BLZa-9mHgUx9WfrfhNxgCdZ76U3bksO7p7G_H7Pn-bjHJo-ns4XFyPY1QCB0iI02iKXYSDFitrE5URoacxUolVGKJcaXTkrQiIaoyJmHi2GUOEYxJrFFjdvH7i7Yv1u2ua_a2QkDxE6j4D6S-AQuAWvI</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Oxygen-Deficient TiO2−δ Nanoparticles via Hydrogen Reduction for High Rate Capability Lithium Batteries</title><source>American Chemical Society Journals</source><creator>Shin, Ji-Yong ; Joo, Jong Hoon ; Samuelis, Dominik ; Maier, Joachim</creator><creatorcontrib>Shin, Ji-Yong ; Joo, Jong Hoon ; Samuelis, Dominik ; Maier, Joachim</creatorcontrib><description>The interest of exploring environmentally benign and safe anode materials for lithium batteries has led to TiO2 (anatase) nanostructures as promising candidates. However, the poor chemical diffusion of lithium in the materials still limits the rate capability. We report on the high rate capability of lithium storage with oxygen-deficient TiO2−δ nanoparticles prepared by hydrogen reduction. A systematic study on the effect of electronic charge carrier concentration on the overall electrochemical lithium storage performance revealed that well-balanced Li+/e– transport is the key factor for high-performance TiO2 anodes.</description><identifier>ISSN: 0897-4756</identifier><identifier>EISSN: 1520-5002</identifier><identifier>DOI: 10.1021/cm2031009</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Chemistry of materials, 2012-02, Vol.24 (3), p.543-551</ispartof><rights>Copyright © 2011 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/cm2031009$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/cm2031009$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Shin, Ji-Yong</creatorcontrib><creatorcontrib>Joo, Jong Hoon</creatorcontrib><creatorcontrib>Samuelis, Dominik</creatorcontrib><creatorcontrib>Maier, Joachim</creatorcontrib><title>Oxygen-Deficient TiO2−δ Nanoparticles via Hydrogen Reduction for High Rate Capability Lithium Batteries</title><title>Chemistry of materials</title><addtitle>Chem. Mater</addtitle><description>The interest of exploring environmentally benign and safe anode materials for lithium batteries has led to TiO2 (anatase) nanostructures as promising candidates. However, the poor chemical diffusion of lithium in the materials still limits the rate capability. We report on the high rate capability of lithium storage with oxygen-deficient TiO2−δ nanoparticles prepared by hydrogen reduction. A systematic study on the effect of electronic charge carrier concentration on the overall electrochemical lithium storage performance revealed that well-balanced Li+/e– transport is the key factor for high-performance TiO2 anodes.</description><issn>0897-4756</issn><issn>1520-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNo9kEtOwzAURS0EEqUwYAeeMAw823GcDKF8glRRqSrj6MV5bl2lSZW4iOyAMWthHSyClVAEYnQnR_dIh7FzAZcCpLiyGwlKAGQHbCS0hEgDyEM2gjQzUWx0csxO-n4NIPZ4OmLr2euwpCa6JeetpybwhZ_Jr7f3zw_-hE27xS54W1PPXzzyfKi6do_zOVU7G3zbcNd2PPfLFZ9jID7BLZa-9mHgUx9WfrfhNxgCdZ76U3bksO7p7G_H7Pn-bjHJo-ns4XFyPY1QCB0iI02iKXYSDFitrE5URoacxUolVGKJcaXTkrQiIaoyJmHi2GUOEYxJrFFjdvH7i7Yv1u2ua_a2QkDxE6j4D6S-AQuAWvI</recordid><startdate>20120214</startdate><enddate>20120214</enddate><creator>Shin, Ji-Yong</creator><creator>Joo, Jong Hoon</creator><creator>Samuelis, Dominik</creator><creator>Maier, Joachim</creator><general>American Chemical Society</general><scope/></search><sort><creationdate>20120214</creationdate><title>Oxygen-Deficient TiO2−δ Nanoparticles via Hydrogen Reduction for High Rate Capability Lithium Batteries</title><author>Shin, Ji-Yong ; Joo, Jong Hoon ; Samuelis, Dominik ; Maier, Joachim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a115t-72765e4f2070c53c5639e7efcad36ebaba4d58be53e11db4e1744f9faa0776c73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shin, Ji-Yong</creatorcontrib><creatorcontrib>Joo, Jong Hoon</creatorcontrib><creatorcontrib>Samuelis, Dominik</creatorcontrib><creatorcontrib>Maier, Joachim</creatorcontrib><jtitle>Chemistry of materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shin, Ji-Yong</au><au>Joo, Jong Hoon</au><au>Samuelis, Dominik</au><au>Maier, Joachim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Oxygen-Deficient TiO2−δ Nanoparticles via Hydrogen Reduction for High Rate Capability Lithium Batteries</atitle><jtitle>Chemistry of materials</jtitle><addtitle>Chem. Mater</addtitle><date>2012-02-14</date><risdate>2012</risdate><volume>24</volume><issue>3</issue><spage>543</spage><epage>551</epage><pages>543-551</pages><issn>0897-4756</issn><eissn>1520-5002</eissn><abstract>The interest of exploring environmentally benign and safe anode materials for lithium batteries has led to TiO2 (anatase) nanostructures as promising candidates. However, the poor chemical diffusion of lithium in the materials still limits the rate capability. We report on the high rate capability of lithium storage with oxygen-deficient TiO2−δ nanoparticles prepared by hydrogen reduction. A systematic study on the effect of electronic charge carrier concentration on the overall electrochemical lithium storage performance revealed that well-balanced Li+/e– transport is the key factor for high-performance TiO2 anodes.</abstract><pub>American Chemical Society</pub><doi>10.1021/cm2031009</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0897-4756
ispartof Chemistry of materials, 2012-02, Vol.24 (3), p.543-551
issn 0897-4756
1520-5002
language eng
recordid cdi_acs_journals_10_1021_cm2031009
source American Chemical Society Journals
title Oxygen-Deficient TiO2−δ Nanoparticles via Hydrogen Reduction for High Rate Capability Lithium Batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T16%3A50%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Oxygen-Deficient%20TiO2%E2%88%92%CE%B4%20Nanoparticles%20via%20Hydrogen%20Reduction%20for%20High%20Rate%20Capability%20Lithium%20Batteries&rft.jtitle=Chemistry%20of%20materials&rft.au=Shin,%20Ji-Yong&rft.date=2012-02-14&rft.volume=24&rft.issue=3&rft.spage=543&rft.epage=551&rft.pages=543-551&rft.issn=0897-4756&rft.eissn=1520-5002&rft_id=info:doi/10.1021/cm2031009&rft_dat=%3Cacs%3Ec838694667%3C/acs%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true