Oxygen-Deficient TiO2−δ Nanoparticles via Hydrogen Reduction for High Rate Capability Lithium Batteries
The interest of exploring environmentally benign and safe anode materials for lithium batteries has led to TiO2 (anatase) nanostructures as promising candidates. However, the poor chemical diffusion of lithium in the materials still limits the rate capability. We report on the high rate capability o...
Gespeichert in:
Veröffentlicht in: | Chemistry of materials 2012-02, Vol.24 (3), p.543-551 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 551 |
---|---|
container_issue | 3 |
container_start_page | 543 |
container_title | Chemistry of materials |
container_volume | 24 |
creator | Shin, Ji-Yong Joo, Jong Hoon Samuelis, Dominik Maier, Joachim |
description | The interest of exploring environmentally benign and safe anode materials for lithium batteries has led to TiO2 (anatase) nanostructures as promising candidates. However, the poor chemical diffusion of lithium in the materials still limits the rate capability. We report on the high rate capability of lithium storage with oxygen-deficient TiO2−δ nanoparticles prepared by hydrogen reduction. A systematic study on the effect of electronic charge carrier concentration on the overall electrochemical lithium storage performance revealed that well-balanced Li+/e– transport is the key factor for high-performance TiO2 anodes. |
doi_str_mv | 10.1021/cm2031009 |
format | Article |
fullrecord | <record><control><sourceid>acs</sourceid><recordid>TN_cdi_acs_journals_10_1021_cm2031009</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c838694667</sourcerecordid><originalsourceid>FETCH-LOGICAL-a115t-72765e4f2070c53c5639e7efcad36ebaba4d58be53e11db4e1744f9faa0776c73</originalsourceid><addsrcrecordid>eNo9kEtOwzAURS0EEqUwYAeeMAw823GcDKF8glRRqSrj6MV5bl2lSZW4iOyAMWthHSyClVAEYnQnR_dIh7FzAZcCpLiyGwlKAGQHbCS0hEgDyEM2gjQzUWx0csxO-n4NIPZ4OmLr2euwpCa6JeetpybwhZ_Jr7f3zw_-hE27xS54W1PPXzzyfKi6do_zOVU7G3zbcNd2PPfLFZ9jID7BLZa-9mHgUx9WfrfhNxgCdZ76U3bksO7p7G_H7Pn-bjHJo-ns4XFyPY1QCB0iI02iKXYSDFitrE5URoacxUolVGKJcaXTkrQiIaoyJmHi2GUOEYxJrFFjdvH7i7Yv1u2ua_a2QkDxE6j4D6S-AQuAWvI</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Oxygen-Deficient TiO2−δ Nanoparticles via Hydrogen Reduction for High Rate Capability Lithium Batteries</title><source>American Chemical Society Journals</source><creator>Shin, Ji-Yong ; Joo, Jong Hoon ; Samuelis, Dominik ; Maier, Joachim</creator><creatorcontrib>Shin, Ji-Yong ; Joo, Jong Hoon ; Samuelis, Dominik ; Maier, Joachim</creatorcontrib><description>The interest of exploring environmentally benign and safe anode materials for lithium batteries has led to TiO2 (anatase) nanostructures as promising candidates. However, the poor chemical diffusion of lithium in the materials still limits the rate capability. We report on the high rate capability of lithium storage with oxygen-deficient TiO2−δ nanoparticles prepared by hydrogen reduction. A systematic study on the effect of electronic charge carrier concentration on the overall electrochemical lithium storage performance revealed that well-balanced Li+/e– transport is the key factor for high-performance TiO2 anodes.</description><identifier>ISSN: 0897-4756</identifier><identifier>EISSN: 1520-5002</identifier><identifier>DOI: 10.1021/cm2031009</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Chemistry of materials, 2012-02, Vol.24 (3), p.543-551</ispartof><rights>Copyright © 2011 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/cm2031009$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/cm2031009$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Shin, Ji-Yong</creatorcontrib><creatorcontrib>Joo, Jong Hoon</creatorcontrib><creatorcontrib>Samuelis, Dominik</creatorcontrib><creatorcontrib>Maier, Joachim</creatorcontrib><title>Oxygen-Deficient TiO2−δ Nanoparticles via Hydrogen Reduction for High Rate Capability Lithium Batteries</title><title>Chemistry of materials</title><addtitle>Chem. Mater</addtitle><description>The interest of exploring environmentally benign and safe anode materials for lithium batteries has led to TiO2 (anatase) nanostructures as promising candidates. However, the poor chemical diffusion of lithium in the materials still limits the rate capability. We report on the high rate capability of lithium storage with oxygen-deficient TiO2−δ nanoparticles prepared by hydrogen reduction. A systematic study on the effect of electronic charge carrier concentration on the overall electrochemical lithium storage performance revealed that well-balanced Li+/e– transport is the key factor for high-performance TiO2 anodes.</description><issn>0897-4756</issn><issn>1520-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNo9kEtOwzAURS0EEqUwYAeeMAw823GcDKF8glRRqSrj6MV5bl2lSZW4iOyAMWthHSyClVAEYnQnR_dIh7FzAZcCpLiyGwlKAGQHbCS0hEgDyEM2gjQzUWx0csxO-n4NIPZ4OmLr2euwpCa6JeetpybwhZ_Jr7f3zw_-hE27xS54W1PPXzzyfKi6do_zOVU7G3zbcNd2PPfLFZ9jID7BLZa-9mHgUx9WfrfhNxgCdZ76U3bksO7p7G_H7Pn-bjHJo-ns4XFyPY1QCB0iI02iKXYSDFitrE5URoacxUolVGKJcaXTkrQiIaoyJmHi2GUOEYxJrFFjdvH7i7Yv1u2ua_a2QkDxE6j4D6S-AQuAWvI</recordid><startdate>20120214</startdate><enddate>20120214</enddate><creator>Shin, Ji-Yong</creator><creator>Joo, Jong Hoon</creator><creator>Samuelis, Dominik</creator><creator>Maier, Joachim</creator><general>American Chemical Society</general><scope/></search><sort><creationdate>20120214</creationdate><title>Oxygen-Deficient TiO2−δ Nanoparticles via Hydrogen Reduction for High Rate Capability Lithium Batteries</title><author>Shin, Ji-Yong ; Joo, Jong Hoon ; Samuelis, Dominik ; Maier, Joachim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a115t-72765e4f2070c53c5639e7efcad36ebaba4d58be53e11db4e1744f9faa0776c73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shin, Ji-Yong</creatorcontrib><creatorcontrib>Joo, Jong Hoon</creatorcontrib><creatorcontrib>Samuelis, Dominik</creatorcontrib><creatorcontrib>Maier, Joachim</creatorcontrib><jtitle>Chemistry of materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shin, Ji-Yong</au><au>Joo, Jong Hoon</au><au>Samuelis, Dominik</au><au>Maier, Joachim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Oxygen-Deficient TiO2−δ Nanoparticles via Hydrogen Reduction for High Rate Capability Lithium Batteries</atitle><jtitle>Chemistry of materials</jtitle><addtitle>Chem. Mater</addtitle><date>2012-02-14</date><risdate>2012</risdate><volume>24</volume><issue>3</issue><spage>543</spage><epage>551</epage><pages>543-551</pages><issn>0897-4756</issn><eissn>1520-5002</eissn><abstract>The interest of exploring environmentally benign and safe anode materials for lithium batteries has led to TiO2 (anatase) nanostructures as promising candidates. However, the poor chemical diffusion of lithium in the materials still limits the rate capability. We report on the high rate capability of lithium storage with oxygen-deficient TiO2−δ nanoparticles prepared by hydrogen reduction. A systematic study on the effect of electronic charge carrier concentration on the overall electrochemical lithium storage performance revealed that well-balanced Li+/e– transport is the key factor for high-performance TiO2 anodes.</abstract><pub>American Chemical Society</pub><doi>10.1021/cm2031009</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0897-4756 |
ispartof | Chemistry of materials, 2012-02, Vol.24 (3), p.543-551 |
issn | 0897-4756 1520-5002 |
language | eng |
recordid | cdi_acs_journals_10_1021_cm2031009 |
source | American Chemical Society Journals |
title | Oxygen-Deficient TiO2−δ Nanoparticles via Hydrogen Reduction for High Rate Capability Lithium Batteries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T16%3A50%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Oxygen-Deficient%20TiO2%E2%88%92%CE%B4%20Nanoparticles%20via%20Hydrogen%20Reduction%20for%20High%20Rate%20Capability%20Lithium%20Batteries&rft.jtitle=Chemistry%20of%20materials&rft.au=Shin,%20Ji-Yong&rft.date=2012-02-14&rft.volume=24&rft.issue=3&rft.spage=543&rft.epage=551&rft.pages=543-551&rft.issn=0897-4756&rft.eissn=1520-5002&rft_id=info:doi/10.1021/cm2031009&rft_dat=%3Cacs%3Ec838694667%3C/acs%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |