Long-Range and Local Structure in the Layered Oxide Li1.2Co0.4Mn0.4O2

The layered oxides being considered as intercalation compounds for lithium batteries display significant differences between the long-range crystal structure and local arrangements around individual atoms. These differences are important, because the local atomic environments affect Li-ion transport...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry of materials 2011-04, Vol.23 (8), p.2039-2050
Hauptverfasser: Bareño, J, Balasubramanian, M, Kang, S. H, Wen, J. G, Lei, C. H, Pol, S. V, Petrov, I, Abraham, D. P
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2050
container_issue 8
container_start_page 2039
container_title Chemistry of materials
container_volume 23
creator Bareño, J
Balasubramanian, M
Kang, S. H
Wen, J. G
Lei, C. H
Pol, S. V
Petrov, I
Abraham, D. P
description The layered oxides being considered as intercalation compounds for lithium batteries display significant differences between the long-range crystal structure and local arrangements around individual atoms. These differences are important, because the local atomic environments affect Li-ion transport and, hence, the oxide’s rate capability, by determining activation barrier energies, by blocking or opening Li-diffusion pathways, etc. Traditional diffraction methods provide key information on the average crystal structure. However, no single experimental technique can unequivocally determine the average long-range crystal structure and the distribution of local environments over crystallographic distances while retaining atomic-scale resolution. Therefore, in this study, we have employed a combination of diffraction, microscopy, and spectroscopy techniques to investigate the long-range (∼1 μm) and local structure (≤1 nm) of Li1.2Co0.4Mn0.4O2, which is a model compound for layered oxides being considered for transportation applications. We find that Li1.2Co0.4Mn0.4O2 contains mostly Mn4+ in Li2MnO3-like atomic environments and Co3+ in LiCoO2-like atomic environments, which are intimately mixed over length scales of ≥2−3 nm, resulting in a Li1.2Co0.4Mn0.4O2 crystallite composition that appears homogeneous over the long-range. In addition, we observed a quasi-random distribution of locally monoclinic structures, topotaxially integrated within a rhombohedral-NaFeO2 framework. Based on these observations, we propose a dendritic microstructure model for Li1.2Co0.4Mn0.4O2 consisting of well integrated LiCoO2- and Li2MnO3-like structures.
doi_str_mv 10.1021/cm200250a
format Article
fullrecord <record><control><sourceid>acs</sourceid><recordid>TN_cdi_acs_journals_10_1021_cm200250a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a847388713</sourcerecordid><originalsourceid>FETCH-LOGICAL-a221t-adf4ae5236d2ed16fc9c727e68df89807e9eb013032d7152f2d6d0fd19c2af343</originalsourceid><addsrcrecordid>eNo9T8tKxTAUDKJgvbrwD7JxmXpy0jbtUsr1AZGCj3WJOcm1l2sKfYD-vRHFzQwDwzwYu5SQS0B57T4QAEuwRyyTJYIokzxmGdSNFoUuq1N2Ns97AJnsdca2Zow78WTjznMbiZvR2QN_XqbVLevk-RD58u65sV9-8sS7z4GSGmSO7Qh58RgTdHjOToI9zP7ijzfs9Xb70t4L0909tDdGWES5CEuhsL5EVRF6klVwjdOofVVTqJsatG_8G0gFCkmn9QGpIggkG4c2qEJt2NVvrnVzvx_XKaa2XkL_873__66-ATUySRg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Long-Range and Local Structure in the Layered Oxide Li1.2Co0.4Mn0.4O2</title><source>ACS Publications</source><creator>Bareño, J ; Balasubramanian, M ; Kang, S. H ; Wen, J. G ; Lei, C. H ; Pol, S. V ; Petrov, I ; Abraham, D. P</creator><creatorcontrib>Bareño, J ; Balasubramanian, M ; Kang, S. H ; Wen, J. G ; Lei, C. H ; Pol, S. V ; Petrov, I ; Abraham, D. P</creatorcontrib><description>The layered oxides being considered as intercalation compounds for lithium batteries display significant differences between the long-range crystal structure and local arrangements around individual atoms. These differences are important, because the local atomic environments affect Li-ion transport and, hence, the oxide’s rate capability, by determining activation barrier energies, by blocking or opening Li-diffusion pathways, etc. Traditional diffraction methods provide key information on the average crystal structure. However, no single experimental technique can unequivocally determine the average long-range crystal structure and the distribution of local environments over crystallographic distances while retaining atomic-scale resolution. Therefore, in this study, we have employed a combination of diffraction, microscopy, and spectroscopy techniques to investigate the long-range (∼1 μm) and local structure (≤1 nm) of Li1.2Co0.4Mn0.4O2, which is a model compound for layered oxides being considered for transportation applications. We find that Li1.2Co0.4Mn0.4O2 contains mostly Mn4+ in Li2MnO3-like atomic environments and Co3+ in LiCoO2-like atomic environments, which are intimately mixed over length scales of ≥2−3 nm, resulting in a Li1.2Co0.4Mn0.4O2 crystallite composition that appears homogeneous over the long-range. In addition, we observed a quasi-random distribution of locally monoclinic structures, topotaxially integrated within a rhombohedral-NaFeO2 framework. Based on these observations, we propose a dendritic microstructure model for Li1.2Co0.4Mn0.4O2 consisting of well integrated LiCoO2- and Li2MnO3-like structures.</description><identifier>ISSN: 0897-4756</identifier><identifier>EISSN: 1520-5002</identifier><identifier>DOI: 10.1021/cm200250a</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Chemistry of materials, 2011-04, Vol.23 (8), p.2039-2050</ispartof><rights>Copyright © 2011 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a221t-adf4ae5236d2ed16fc9c727e68df89807e9eb013032d7152f2d6d0fd19c2af343</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/cm200250a$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/cm200250a$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,782,786,27085,27933,27934,56747,56797</link.rule.ids></links><search><creatorcontrib>Bareño, J</creatorcontrib><creatorcontrib>Balasubramanian, M</creatorcontrib><creatorcontrib>Kang, S. H</creatorcontrib><creatorcontrib>Wen, J. G</creatorcontrib><creatorcontrib>Lei, C. H</creatorcontrib><creatorcontrib>Pol, S. V</creatorcontrib><creatorcontrib>Petrov, I</creatorcontrib><creatorcontrib>Abraham, D. P</creatorcontrib><title>Long-Range and Local Structure in the Layered Oxide Li1.2Co0.4Mn0.4O2</title><title>Chemistry of materials</title><addtitle>Chem. Mater</addtitle><description>The layered oxides being considered as intercalation compounds for lithium batteries display significant differences between the long-range crystal structure and local arrangements around individual atoms. These differences are important, because the local atomic environments affect Li-ion transport and, hence, the oxide’s rate capability, by determining activation barrier energies, by blocking or opening Li-diffusion pathways, etc. Traditional diffraction methods provide key information on the average crystal structure. However, no single experimental technique can unequivocally determine the average long-range crystal structure and the distribution of local environments over crystallographic distances while retaining atomic-scale resolution. Therefore, in this study, we have employed a combination of diffraction, microscopy, and spectroscopy techniques to investigate the long-range (∼1 μm) and local structure (≤1 nm) of Li1.2Co0.4Mn0.4O2, which is a model compound for layered oxides being considered for transportation applications. We find that Li1.2Co0.4Mn0.4O2 contains mostly Mn4+ in Li2MnO3-like atomic environments and Co3+ in LiCoO2-like atomic environments, which are intimately mixed over length scales of ≥2−3 nm, resulting in a Li1.2Co0.4Mn0.4O2 crystallite composition that appears homogeneous over the long-range. In addition, we observed a quasi-random distribution of locally monoclinic structures, topotaxially integrated within a rhombohedral-NaFeO2 framework. Based on these observations, we propose a dendritic microstructure model for Li1.2Co0.4Mn0.4O2 consisting of well integrated LiCoO2- and Li2MnO3-like structures.</description><issn>0897-4756</issn><issn>1520-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNo9T8tKxTAUDKJgvbrwD7JxmXpy0jbtUsr1AZGCj3WJOcm1l2sKfYD-vRHFzQwDwzwYu5SQS0B57T4QAEuwRyyTJYIokzxmGdSNFoUuq1N2Ns97AJnsdca2Zow78WTjznMbiZvR2QN_XqbVLevk-RD58u65sV9-8sS7z4GSGmSO7Qh58RgTdHjOToI9zP7ijzfs9Xb70t4L0909tDdGWES5CEuhsL5EVRF6klVwjdOofVVTqJsatG_8G0gFCkmn9QGpIggkG4c2qEJt2NVvrnVzvx_XKaa2XkL_873__66-ATUySRg</recordid><startdate>20110426</startdate><enddate>20110426</enddate><creator>Bareño, J</creator><creator>Balasubramanian, M</creator><creator>Kang, S. H</creator><creator>Wen, J. G</creator><creator>Lei, C. H</creator><creator>Pol, S. V</creator><creator>Petrov, I</creator><creator>Abraham, D. P</creator><general>American Chemical Society</general><scope/></search><sort><creationdate>20110426</creationdate><title>Long-Range and Local Structure in the Layered Oxide Li1.2Co0.4Mn0.4O2</title><author>Bareño, J ; Balasubramanian, M ; Kang, S. H ; Wen, J. G ; Lei, C. H ; Pol, S. V ; Petrov, I ; Abraham, D. P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a221t-adf4ae5236d2ed16fc9c727e68df89807e9eb013032d7152f2d6d0fd19c2af343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bareño, J</creatorcontrib><creatorcontrib>Balasubramanian, M</creatorcontrib><creatorcontrib>Kang, S. H</creatorcontrib><creatorcontrib>Wen, J. G</creatorcontrib><creatorcontrib>Lei, C. H</creatorcontrib><creatorcontrib>Pol, S. V</creatorcontrib><creatorcontrib>Petrov, I</creatorcontrib><creatorcontrib>Abraham, D. P</creatorcontrib><jtitle>Chemistry of materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bareño, J</au><au>Balasubramanian, M</au><au>Kang, S. H</au><au>Wen, J. G</au><au>Lei, C. H</au><au>Pol, S. V</au><au>Petrov, I</au><au>Abraham, D. P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Long-Range and Local Structure in the Layered Oxide Li1.2Co0.4Mn0.4O2</atitle><jtitle>Chemistry of materials</jtitle><addtitle>Chem. Mater</addtitle><date>2011-04-26</date><risdate>2011</risdate><volume>23</volume><issue>8</issue><spage>2039</spage><epage>2050</epage><pages>2039-2050</pages><issn>0897-4756</issn><eissn>1520-5002</eissn><abstract>The layered oxides being considered as intercalation compounds for lithium batteries display significant differences between the long-range crystal structure and local arrangements around individual atoms. These differences are important, because the local atomic environments affect Li-ion transport and, hence, the oxide’s rate capability, by determining activation barrier energies, by blocking or opening Li-diffusion pathways, etc. Traditional diffraction methods provide key information on the average crystal structure. However, no single experimental technique can unequivocally determine the average long-range crystal structure and the distribution of local environments over crystallographic distances while retaining atomic-scale resolution. Therefore, in this study, we have employed a combination of diffraction, microscopy, and spectroscopy techniques to investigate the long-range (∼1 μm) and local structure (≤1 nm) of Li1.2Co0.4Mn0.4O2, which is a model compound for layered oxides being considered for transportation applications. We find that Li1.2Co0.4Mn0.4O2 contains mostly Mn4+ in Li2MnO3-like atomic environments and Co3+ in LiCoO2-like atomic environments, which are intimately mixed over length scales of ≥2−3 nm, resulting in a Li1.2Co0.4Mn0.4O2 crystallite composition that appears homogeneous over the long-range. In addition, we observed a quasi-random distribution of locally monoclinic structures, topotaxially integrated within a rhombohedral-NaFeO2 framework. Based on these observations, we propose a dendritic microstructure model for Li1.2Co0.4Mn0.4O2 consisting of well integrated LiCoO2- and Li2MnO3-like structures.</abstract><pub>American Chemical Society</pub><doi>10.1021/cm200250a</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0897-4756
ispartof Chemistry of materials, 2011-04, Vol.23 (8), p.2039-2050
issn 0897-4756
1520-5002
language eng
recordid cdi_acs_journals_10_1021_cm200250a
source ACS Publications
title Long-Range and Local Structure in the Layered Oxide Li1.2Co0.4Mn0.4O2
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T05%3A31%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Long-Range%20and%20Local%20Structure%20in%20the%20Layered%20Oxide%20Li1.2Co0.4Mn0.4O2&rft.jtitle=Chemistry%20of%20materials&rft.au=Baren%CC%83o,%20J&rft.date=2011-04-26&rft.volume=23&rft.issue=8&rft.spage=2039&rft.epage=2050&rft.pages=2039-2050&rft.issn=0897-4756&rft.eissn=1520-5002&rft_id=info:doi/10.1021/cm200250a&rft_dat=%3Cacs%3Ea847388713%3C/acs%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true