Small Angle X‑ray Scattering-Based Elucidation of the Self-Association Mechanism of Human Insulin Analogue LysB29(Nεω‑carboxyheptadecanoyl) des(B30)
LysB29(Nεω-carboxyheptadecanoyl) des(B30) human insulin is an insulin analogue belonging to a class of analogues designed to form soluble depots in subcutis by self-association, aiming at a protracted action. On the basis of small angle X-ray scattering (SAXS) supplemented by a range of biophysical...
Gespeichert in:
Veröffentlicht in: | Biochemistry (Easton) 2013-01, Vol.52 (2), p.282-294 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 294 |
---|---|
container_issue | 2 |
container_start_page | 282 |
container_title | Biochemistry (Easton) |
container_volume | 52 |
creator | Jensen, Malene Hillerup Wahlund, Per-Olof Toft, Katrine Nørgaard Jacobsen, Jes Kristian Steensgaard, Dorte Bjerre van de Weert, Marco Havelund, Svend Vestergaard, Bente |
description | LysB29(Nεω-carboxyheptadecanoyl) des(B30) human insulin is an insulin analogue belonging to a class of analogues designed to form soluble depots in subcutis by self-association, aiming at a protracted action. On the basis of small angle X-ray scattering (SAXS) supplemented by a range of biophysical and structural methods (field flow fractionation, dynamic and multiangle light scattering, circular dichroism, size exclusion chromatography, and crystallography), we propose a mechanism for the self-association expected to occur upon subcutaneous injection of this insulin analogue. SAXS data provide evidence of the in solution structure of the self-associated oligomer, which is a long straight rod composed of “tense” state insulin hexamers (T6-hexamers) as the smallest repeating unit. The smallest oligomer building block in the process is a T6T6-dihexamer. This tense dihexamer is formed by the allosteric change of the initial equilibrium between a proposed “relaxed” state R6-hexamer and an R3T3T3R3-dihexamer. The allosteric change from relaxed to tense is triggered by removal of phenol, mimicking subcutaneous injection. The data hence provide the first unequivocal evidence of the mechanism of self-association for this type of insulin analogue. |
doi_str_mv | 10.1021/bi3008615 |
format | Article |
fullrecord | <record><control><sourceid>acs</sourceid><recordid>TN_cdi_acs_journals_10_1021_bi3008615</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b800880516</sourcerecordid><originalsourceid>FETCH-LOGICAL-a115t-c1bc6b3c418a00b7f553c28c14e91784eb5193da38a4a69495bdf259e02995173</originalsourceid><addsrcrecordid>eNo9kLFOwzAQhi0EEqUw8AZekNohYMd2Eo9tVWilAkNBYosujtO6ch0UJxLZWBlZeQ9eA96BJyFVEdOv-3X67vQhdE7JJSUhvcoMIySJqDhAPSpCEnApxSHqEUKiIJQROUYn3m-6kZOY99DHcgvW4pFbWY2ffl7fK2jxUkFd68q4VTAGr3M8tY0yOdSmdLgscL3WeKltEYy8L5XZ97darcEZv91tzJotODx3vrHGdXSw5arReNH6cSgHd1-f32_dLQVVVr60a_1cQ64VuLK1Q5xrPxgzMjxFRwVYr8_-so8er6cPk1mwuL-ZT0aLACgVdaBopqKMKU4TICSLCyGYChNFuZY0TrjOBJUsB5YAh0hyKbK8CIXUJOzU0Jj10cWeC8qnm7Kpum99Skm6E5r-C2W_Dmprxg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Small Angle X‑ray Scattering-Based Elucidation of the Self-Association Mechanism of Human Insulin Analogue LysB29(Nεω‑carboxyheptadecanoyl) des(B30)</title><source>ACS Publications</source><creator>Jensen, Malene Hillerup ; Wahlund, Per-Olof ; Toft, Katrine Nørgaard ; Jacobsen, Jes Kristian ; Steensgaard, Dorte Bjerre ; van de Weert, Marco ; Havelund, Svend ; Vestergaard, Bente</creator><creatorcontrib>Jensen, Malene Hillerup ; Wahlund, Per-Olof ; Toft, Katrine Nørgaard ; Jacobsen, Jes Kristian ; Steensgaard, Dorte Bjerre ; van de Weert, Marco ; Havelund, Svend ; Vestergaard, Bente</creatorcontrib><description>LysB29(Nεω-carboxyheptadecanoyl) des(B30) human insulin is an insulin analogue belonging to a class of analogues designed to form soluble depots in subcutis by self-association, aiming at a protracted action. On the basis of small angle X-ray scattering (SAXS) supplemented by a range of biophysical and structural methods (field flow fractionation, dynamic and multiangle light scattering, circular dichroism, size exclusion chromatography, and crystallography), we propose a mechanism for the self-association expected to occur upon subcutaneous injection of this insulin analogue. SAXS data provide evidence of the in solution structure of the self-associated oligomer, which is a long straight rod composed of “tense” state insulin hexamers (T6-hexamers) as the smallest repeating unit. The smallest oligomer building block in the process is a T6T6-dihexamer. This tense dihexamer is formed by the allosteric change of the initial equilibrium between a proposed “relaxed” state R6-hexamer and an R3T3T3R3-dihexamer. The allosteric change from relaxed to tense is triggered by removal of phenol, mimicking subcutaneous injection. The data hence provide the first unequivocal evidence of the mechanism of self-association for this type of insulin analogue.</description><identifier>ISSN: 0006-2960</identifier><identifier>EISSN: 1520-4995</identifier><identifier>DOI: 10.1021/bi3008615</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Biochemistry (Easton), 2013-01, Vol.52 (2), p.282-294</ispartof><rights>Copyright © 2012 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/bi3008615$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/bi3008615$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Jensen, Malene Hillerup</creatorcontrib><creatorcontrib>Wahlund, Per-Olof</creatorcontrib><creatorcontrib>Toft, Katrine Nørgaard</creatorcontrib><creatorcontrib>Jacobsen, Jes Kristian</creatorcontrib><creatorcontrib>Steensgaard, Dorte Bjerre</creatorcontrib><creatorcontrib>van de Weert, Marco</creatorcontrib><creatorcontrib>Havelund, Svend</creatorcontrib><creatorcontrib>Vestergaard, Bente</creatorcontrib><title>Small Angle X‑ray Scattering-Based Elucidation of the Self-Association Mechanism of Human Insulin Analogue LysB29(Nεω‑carboxyheptadecanoyl) des(B30)</title><title>Biochemistry (Easton)</title><addtitle>Biochemistry</addtitle><description>LysB29(Nεω-carboxyheptadecanoyl) des(B30) human insulin is an insulin analogue belonging to a class of analogues designed to form soluble depots in subcutis by self-association, aiming at a protracted action. On the basis of small angle X-ray scattering (SAXS) supplemented by a range of biophysical and structural methods (field flow fractionation, dynamic and multiangle light scattering, circular dichroism, size exclusion chromatography, and crystallography), we propose a mechanism for the self-association expected to occur upon subcutaneous injection of this insulin analogue. SAXS data provide evidence of the in solution structure of the self-associated oligomer, which is a long straight rod composed of “tense” state insulin hexamers (T6-hexamers) as the smallest repeating unit. The smallest oligomer building block in the process is a T6T6-dihexamer. This tense dihexamer is formed by the allosteric change of the initial equilibrium between a proposed “relaxed” state R6-hexamer and an R3T3T3R3-dihexamer. The allosteric change from relaxed to tense is triggered by removal of phenol, mimicking subcutaneous injection. The data hence provide the first unequivocal evidence of the mechanism of self-association for this type of insulin analogue.</description><issn>0006-2960</issn><issn>1520-4995</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNo9kLFOwzAQhi0EEqUw8AZekNohYMd2Eo9tVWilAkNBYosujtO6ch0UJxLZWBlZeQ9eA96BJyFVEdOv-3X67vQhdE7JJSUhvcoMIySJqDhAPSpCEnApxSHqEUKiIJQROUYn3m-6kZOY99DHcgvW4pFbWY2ffl7fK2jxUkFd68q4VTAGr3M8tY0yOdSmdLgscL3WeKltEYy8L5XZ97darcEZv91tzJotODx3vrHGdXSw5arReNH6cSgHd1-f32_dLQVVVr60a_1cQ64VuLK1Q5xrPxgzMjxFRwVYr8_-so8er6cPk1mwuL-ZT0aLACgVdaBopqKMKU4TICSLCyGYChNFuZY0TrjOBJUsB5YAh0hyKbK8CIXUJOzU0Jj10cWeC8qnm7Kpum99Skm6E5r-C2W_Dmprxg</recordid><startdate>20130115</startdate><enddate>20130115</enddate><creator>Jensen, Malene Hillerup</creator><creator>Wahlund, Per-Olof</creator><creator>Toft, Katrine Nørgaard</creator><creator>Jacobsen, Jes Kristian</creator><creator>Steensgaard, Dorte Bjerre</creator><creator>van de Weert, Marco</creator><creator>Havelund, Svend</creator><creator>Vestergaard, Bente</creator><general>American Chemical Society</general><scope/></search><sort><creationdate>20130115</creationdate><title>Small Angle X‑ray Scattering-Based Elucidation of the Self-Association Mechanism of Human Insulin Analogue LysB29(Nεω‑carboxyheptadecanoyl) des(B30)</title><author>Jensen, Malene Hillerup ; Wahlund, Per-Olof ; Toft, Katrine Nørgaard ; Jacobsen, Jes Kristian ; Steensgaard, Dorte Bjerre ; van de Weert, Marco ; Havelund, Svend ; Vestergaard, Bente</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a115t-c1bc6b3c418a00b7f553c28c14e91784eb5193da38a4a69495bdf259e02995173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jensen, Malene Hillerup</creatorcontrib><creatorcontrib>Wahlund, Per-Olof</creatorcontrib><creatorcontrib>Toft, Katrine Nørgaard</creatorcontrib><creatorcontrib>Jacobsen, Jes Kristian</creatorcontrib><creatorcontrib>Steensgaard, Dorte Bjerre</creatorcontrib><creatorcontrib>van de Weert, Marco</creatorcontrib><creatorcontrib>Havelund, Svend</creatorcontrib><creatorcontrib>Vestergaard, Bente</creatorcontrib><jtitle>Biochemistry (Easton)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jensen, Malene Hillerup</au><au>Wahlund, Per-Olof</au><au>Toft, Katrine Nørgaard</au><au>Jacobsen, Jes Kristian</au><au>Steensgaard, Dorte Bjerre</au><au>van de Weert, Marco</au><au>Havelund, Svend</au><au>Vestergaard, Bente</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Small Angle X‑ray Scattering-Based Elucidation of the Self-Association Mechanism of Human Insulin Analogue LysB29(Nεω‑carboxyheptadecanoyl) des(B30)</atitle><jtitle>Biochemistry (Easton)</jtitle><addtitle>Biochemistry</addtitle><date>2013-01-15</date><risdate>2013</risdate><volume>52</volume><issue>2</issue><spage>282</spage><epage>294</epage><pages>282-294</pages><issn>0006-2960</issn><eissn>1520-4995</eissn><abstract>LysB29(Nεω-carboxyheptadecanoyl) des(B30) human insulin is an insulin analogue belonging to a class of analogues designed to form soluble depots in subcutis by self-association, aiming at a protracted action. On the basis of small angle X-ray scattering (SAXS) supplemented by a range of biophysical and structural methods (field flow fractionation, dynamic and multiangle light scattering, circular dichroism, size exclusion chromatography, and crystallography), we propose a mechanism for the self-association expected to occur upon subcutaneous injection of this insulin analogue. SAXS data provide evidence of the in solution structure of the self-associated oligomer, which is a long straight rod composed of “tense” state insulin hexamers (T6-hexamers) as the smallest repeating unit. The smallest oligomer building block in the process is a T6T6-dihexamer. This tense dihexamer is formed by the allosteric change of the initial equilibrium between a proposed “relaxed” state R6-hexamer and an R3T3T3R3-dihexamer. The allosteric change from relaxed to tense is triggered by removal of phenol, mimicking subcutaneous injection. The data hence provide the first unequivocal evidence of the mechanism of self-association for this type of insulin analogue.</abstract><pub>American Chemical Society</pub><doi>10.1021/bi3008615</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-2960 |
ispartof | Biochemistry (Easton), 2013-01, Vol.52 (2), p.282-294 |
issn | 0006-2960 1520-4995 |
language | eng |
recordid | cdi_acs_journals_10_1021_bi3008615 |
source | ACS Publications |
title | Small Angle X‑ray Scattering-Based Elucidation of the Self-Association Mechanism of Human Insulin Analogue LysB29(Nεω‑carboxyheptadecanoyl) des(B30) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T20%3A53%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Small%20Angle%20X%E2%80%91ray%20Scattering-Based%20Elucidation%20of%20the%20Self-Association%20Mechanism%20of%20Human%20Insulin%20Analogue%20LysB29(N%CE%B5%CF%89%E2%80%91carboxyheptadecanoyl)%20des(B30)&rft.jtitle=Biochemistry%20(Easton)&rft.au=Jensen,%20Malene%20Hillerup&rft.date=2013-01-15&rft.volume=52&rft.issue=2&rft.spage=282&rft.epage=294&rft.pages=282-294&rft.issn=0006-2960&rft.eissn=1520-4995&rft_id=info:doi/10.1021/bi3008615&rft_dat=%3Cacs%3Eb800880516%3C/acs%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |