Acidic Electrochemical Reduction of CO2 Using Nickel Nitride on Multiwalled Carbon Nanotube as Selective Catalyst

Ni3N/MCNT (multiwalled carbon nanotube) nanocomposites fabricated by ammonolysis displayed high CO2 electrochemical reduction reactivity with CO Faradaic efficiencies of 89.0% and current density of 6.5 mA cm–2 at −0.73 V vs reversible hydrogen electrode (RHE). The Ni3N/MCNT catalyst could operate u...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS sustainable chemistry & engineering 2019-03, Vol.7 (6), p.6106-6112
Hauptverfasser: Wang, Zhuo, Hou, Pengfei, Wang, Yulin, Xiang, Xu, Kang, Peng
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6112
container_issue 6
container_start_page 6106
container_title ACS sustainable chemistry & engineering
container_volume 7
creator Wang, Zhuo
Hou, Pengfei
Wang, Yulin
Xiang, Xu
Kang, Peng
description Ni3N/MCNT (multiwalled carbon nanotube) nanocomposites fabricated by ammonolysis displayed high CO2 electrochemical reduction reactivity with CO Faradaic efficiencies of 89.0% and current density of 6.5 mA cm–2 at −0.73 V vs reversible hydrogen electrode (RHE). The Ni3N/MCNT catalyst could operate under weakly acidic conditions in the pH range of 2.5–7.2. Even at pH 2.5, the CO Faradaic efficiency remained at 50.1%, demonstrating the high selectivity for CO2 reduction. The high catalyst selectivity could be due to increased adsorption of CO2 on the Ni3N surface, which can compete with hydrogen evolution under acidic conditions.
doi_str_mv 10.1021/acssuschemeng.8b06278
format Article
fullrecord <record><control><sourceid>acs</sourceid><recordid>TN_cdi_acs_journals_10_1021_acssuschemeng_8b06278</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a031425736</sourcerecordid><originalsourceid>FETCH-LOGICAL-a263t-63d84cd5e35be335962a9426b5c8973bac3119e07ca06a10401a5cb313d9cb533</originalsourceid><addsrcrecordid>eNpVkNtKAzEQhoMoWGofQcgLbM1hk81elqUeoLag9nrJYVpT4y5usopvb4q90Ln5h_nhG_gQuqZkTgmjN9rGOEb7Cu_Q7efKEMkqdYYmjEpVkFKJ8z_7JZrFeCB56pozRSfoY2G98xYvA9g09EeOtzrgJ3CjTb7vcL_DzYbhbfTdHq-9fYOQIw3eAc714xiS_9IhgMONHkw-rXXXp9EA1hE_wxHsPyGXSYfvmK7QxU6HCLNTTtH2dvnS3Berzd1Ds1gVmkmeCsmdKq0TwIUBzkUtma5LJo2wqq640ZZTWgOprCZSU1ISqoU1nHJXWyM4nyL6y82G2kM_Dl3-1lLSHrW1_7S1J238B7m5ZXg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Acidic Electrochemical Reduction of CO2 Using Nickel Nitride on Multiwalled Carbon Nanotube as Selective Catalyst</title><source>American Chemical Society Journals</source><creator>Wang, Zhuo ; Hou, Pengfei ; Wang, Yulin ; Xiang, Xu ; Kang, Peng</creator><creatorcontrib>Wang, Zhuo ; Hou, Pengfei ; Wang, Yulin ; Xiang, Xu ; Kang, Peng</creatorcontrib><description>Ni3N/MCNT (multiwalled carbon nanotube) nanocomposites fabricated by ammonolysis displayed high CO2 electrochemical reduction reactivity with CO Faradaic efficiencies of 89.0% and current density of 6.5 mA cm–2 at −0.73 V vs reversible hydrogen electrode (RHE). The Ni3N/MCNT catalyst could operate under weakly acidic conditions in the pH range of 2.5–7.2. Even at pH 2.5, the CO Faradaic efficiency remained at 50.1%, demonstrating the high selectivity for CO2 reduction. The high catalyst selectivity could be due to increased adsorption of CO2 on the Ni3N surface, which can compete with hydrogen evolution under acidic conditions.</description><identifier>ISSN: 2168-0485</identifier><identifier>EISSN: 2168-0485</identifier><identifier>DOI: 10.1021/acssuschemeng.8b06278</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS sustainable chemistry &amp; engineering, 2019-03, Vol.7 (6), p.6106-6112</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-6639-8299 ; 0000-0003-1089-6210</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acssuschemeng.8b06278$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acssuschemeng.8b06278$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,27055,27903,27904,56716,56766</link.rule.ids></links><search><creatorcontrib>Wang, Zhuo</creatorcontrib><creatorcontrib>Hou, Pengfei</creatorcontrib><creatorcontrib>Wang, Yulin</creatorcontrib><creatorcontrib>Xiang, Xu</creatorcontrib><creatorcontrib>Kang, Peng</creatorcontrib><title>Acidic Electrochemical Reduction of CO2 Using Nickel Nitride on Multiwalled Carbon Nanotube as Selective Catalyst</title><title>ACS sustainable chemistry &amp; engineering</title><addtitle>ACS Sustainable Chem. Eng</addtitle><description>Ni3N/MCNT (multiwalled carbon nanotube) nanocomposites fabricated by ammonolysis displayed high CO2 electrochemical reduction reactivity with CO Faradaic efficiencies of 89.0% and current density of 6.5 mA cm–2 at −0.73 V vs reversible hydrogen electrode (RHE). The Ni3N/MCNT catalyst could operate under weakly acidic conditions in the pH range of 2.5–7.2. Even at pH 2.5, the CO Faradaic efficiency remained at 50.1%, demonstrating the high selectivity for CO2 reduction. The high catalyst selectivity could be due to increased adsorption of CO2 on the Ni3N surface, which can compete with hydrogen evolution under acidic conditions.</description><issn>2168-0485</issn><issn>2168-0485</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpVkNtKAzEQhoMoWGofQcgLbM1hk81elqUeoLag9nrJYVpT4y5usopvb4q90Ln5h_nhG_gQuqZkTgmjN9rGOEb7Cu_Q7efKEMkqdYYmjEpVkFKJ8z_7JZrFeCB56pozRSfoY2G98xYvA9g09EeOtzrgJ3CjTb7vcL_DzYbhbfTdHq-9fYOQIw3eAc714xiS_9IhgMONHkw-rXXXp9EA1hE_wxHsPyGXSYfvmK7QxU6HCLNTTtH2dvnS3Berzd1Ds1gVmkmeCsmdKq0TwIUBzkUtma5LJo2wqq640ZZTWgOprCZSU1ISqoU1nHJXWyM4nyL6y82G2kM_Dl3-1lLSHrW1_7S1J238B7m5ZXg</recordid><startdate>20190318</startdate><enddate>20190318</enddate><creator>Wang, Zhuo</creator><creator>Hou, Pengfei</creator><creator>Wang, Yulin</creator><creator>Xiang, Xu</creator><creator>Kang, Peng</creator><general>American Chemical Society</general><scope/><orcidid>https://orcid.org/0000-0002-6639-8299</orcidid><orcidid>https://orcid.org/0000-0003-1089-6210</orcidid></search><sort><creationdate>20190318</creationdate><title>Acidic Electrochemical Reduction of CO2 Using Nickel Nitride on Multiwalled Carbon Nanotube as Selective Catalyst</title><author>Wang, Zhuo ; Hou, Pengfei ; Wang, Yulin ; Xiang, Xu ; Kang, Peng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a263t-63d84cd5e35be335962a9426b5c8973bac3119e07ca06a10401a5cb313d9cb533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Zhuo</creatorcontrib><creatorcontrib>Hou, Pengfei</creatorcontrib><creatorcontrib>Wang, Yulin</creatorcontrib><creatorcontrib>Xiang, Xu</creatorcontrib><creatorcontrib>Kang, Peng</creatorcontrib><jtitle>ACS sustainable chemistry &amp; engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Zhuo</au><au>Hou, Pengfei</au><au>Wang, Yulin</au><au>Xiang, Xu</au><au>Kang, Peng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Acidic Electrochemical Reduction of CO2 Using Nickel Nitride on Multiwalled Carbon Nanotube as Selective Catalyst</atitle><jtitle>ACS sustainable chemistry &amp; engineering</jtitle><addtitle>ACS Sustainable Chem. Eng</addtitle><date>2019-03-18</date><risdate>2019</risdate><volume>7</volume><issue>6</issue><spage>6106</spage><epage>6112</epage><pages>6106-6112</pages><issn>2168-0485</issn><eissn>2168-0485</eissn><abstract>Ni3N/MCNT (multiwalled carbon nanotube) nanocomposites fabricated by ammonolysis displayed high CO2 electrochemical reduction reactivity with CO Faradaic efficiencies of 89.0% and current density of 6.5 mA cm–2 at −0.73 V vs reversible hydrogen electrode (RHE). The Ni3N/MCNT catalyst could operate under weakly acidic conditions in the pH range of 2.5–7.2. Even at pH 2.5, the CO Faradaic efficiency remained at 50.1%, demonstrating the high selectivity for CO2 reduction. The high catalyst selectivity could be due to increased adsorption of CO2 on the Ni3N surface, which can compete with hydrogen evolution under acidic conditions.</abstract><pub>American Chemical Society</pub><doi>10.1021/acssuschemeng.8b06278</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-6639-8299</orcidid><orcidid>https://orcid.org/0000-0003-1089-6210</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2168-0485
ispartof ACS sustainable chemistry & engineering, 2019-03, Vol.7 (6), p.6106-6112
issn 2168-0485
2168-0485
language eng
recordid cdi_acs_journals_10_1021_acssuschemeng_8b06278
source American Chemical Society Journals
title Acidic Electrochemical Reduction of CO2 Using Nickel Nitride on Multiwalled Carbon Nanotube as Selective Catalyst
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T23%3A21%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Acidic%20Electrochemical%20Reduction%20of%20CO2%20Using%20Nickel%20Nitride%20on%20Multiwalled%20Carbon%20Nanotube%20as%20Selective%20Catalyst&rft.jtitle=ACS%20sustainable%20chemistry%20&%20engineering&rft.au=Wang,%20Zhuo&rft.date=2019-03-18&rft.volume=7&rft.issue=6&rft.spage=6106&rft.epage=6112&rft.pages=6106-6112&rft.issn=2168-0485&rft.eissn=2168-0485&rft_id=info:doi/10.1021/acssuschemeng.8b06278&rft_dat=%3Cacs%3Ea031425736%3C/acs%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true