Acidic Electrochemical Reduction of CO2 Using Nickel Nitride on Multiwalled Carbon Nanotube as Selective Catalyst
Ni3N/MCNT (multiwalled carbon nanotube) nanocomposites fabricated by ammonolysis displayed high CO2 electrochemical reduction reactivity with CO Faradaic efficiencies of 89.0% and current density of 6.5 mA cm–2 at −0.73 V vs reversible hydrogen electrode (RHE). The Ni3N/MCNT catalyst could operate u...
Gespeichert in:
Veröffentlicht in: | ACS sustainable chemistry & engineering 2019-03, Vol.7 (6), p.6106-6112 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6112 |
---|---|
container_issue | 6 |
container_start_page | 6106 |
container_title | ACS sustainable chemistry & engineering |
container_volume | 7 |
creator | Wang, Zhuo Hou, Pengfei Wang, Yulin Xiang, Xu Kang, Peng |
description | Ni3N/MCNT (multiwalled carbon nanotube) nanocomposites fabricated by ammonolysis displayed high CO2 electrochemical reduction reactivity with CO Faradaic efficiencies of 89.0% and current density of 6.5 mA cm–2 at −0.73 V vs reversible hydrogen electrode (RHE). The Ni3N/MCNT catalyst could operate under weakly acidic conditions in the pH range of 2.5–7.2. Even at pH 2.5, the CO Faradaic efficiency remained at 50.1%, demonstrating the high selectivity for CO2 reduction. The high catalyst selectivity could be due to increased adsorption of CO2 on the Ni3N surface, which can compete with hydrogen evolution under acidic conditions. |
doi_str_mv | 10.1021/acssuschemeng.8b06278 |
format | Article |
fullrecord | <record><control><sourceid>acs</sourceid><recordid>TN_cdi_acs_journals_10_1021_acssuschemeng_8b06278</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a031425736</sourcerecordid><originalsourceid>FETCH-LOGICAL-a263t-63d84cd5e35be335962a9426b5c8973bac3119e07ca06a10401a5cb313d9cb533</originalsourceid><addsrcrecordid>eNpVkNtKAzEQhoMoWGofQcgLbM1hk81elqUeoLag9nrJYVpT4y5usopvb4q90Ln5h_nhG_gQuqZkTgmjN9rGOEb7Cu_Q7efKEMkqdYYmjEpVkFKJ8z_7JZrFeCB56pozRSfoY2G98xYvA9g09EeOtzrgJ3CjTb7vcL_DzYbhbfTdHq-9fYOQIw3eAc714xiS_9IhgMONHkw-rXXXp9EA1hE_wxHsPyGXSYfvmK7QxU6HCLNTTtH2dvnS3Berzd1Ds1gVmkmeCsmdKq0TwIUBzkUtma5LJo2wqq640ZZTWgOprCZSU1ISqoU1nHJXWyM4nyL6y82G2kM_Dl3-1lLSHrW1_7S1J238B7m5ZXg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Acidic Electrochemical Reduction of CO2 Using Nickel Nitride on Multiwalled Carbon Nanotube as Selective Catalyst</title><source>American Chemical Society Journals</source><creator>Wang, Zhuo ; Hou, Pengfei ; Wang, Yulin ; Xiang, Xu ; Kang, Peng</creator><creatorcontrib>Wang, Zhuo ; Hou, Pengfei ; Wang, Yulin ; Xiang, Xu ; Kang, Peng</creatorcontrib><description>Ni3N/MCNT (multiwalled carbon nanotube) nanocomposites fabricated by ammonolysis displayed high CO2 electrochemical reduction reactivity with CO Faradaic efficiencies of 89.0% and current density of 6.5 mA cm–2 at −0.73 V vs reversible hydrogen electrode (RHE). The Ni3N/MCNT catalyst could operate under weakly acidic conditions in the pH range of 2.5–7.2. Even at pH 2.5, the CO Faradaic efficiency remained at 50.1%, demonstrating the high selectivity for CO2 reduction. The high catalyst selectivity could be due to increased adsorption of CO2 on the Ni3N surface, which can compete with hydrogen evolution under acidic conditions.</description><identifier>ISSN: 2168-0485</identifier><identifier>EISSN: 2168-0485</identifier><identifier>DOI: 10.1021/acssuschemeng.8b06278</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS sustainable chemistry & engineering, 2019-03, Vol.7 (6), p.6106-6112</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-6639-8299 ; 0000-0003-1089-6210</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acssuschemeng.8b06278$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acssuschemeng.8b06278$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,27055,27903,27904,56716,56766</link.rule.ids></links><search><creatorcontrib>Wang, Zhuo</creatorcontrib><creatorcontrib>Hou, Pengfei</creatorcontrib><creatorcontrib>Wang, Yulin</creatorcontrib><creatorcontrib>Xiang, Xu</creatorcontrib><creatorcontrib>Kang, Peng</creatorcontrib><title>Acidic Electrochemical Reduction of CO2 Using Nickel Nitride on Multiwalled Carbon Nanotube as Selective Catalyst</title><title>ACS sustainable chemistry & engineering</title><addtitle>ACS Sustainable Chem. Eng</addtitle><description>Ni3N/MCNT (multiwalled carbon nanotube) nanocomposites fabricated by ammonolysis displayed high CO2 electrochemical reduction reactivity with CO Faradaic efficiencies of 89.0% and current density of 6.5 mA cm–2 at −0.73 V vs reversible hydrogen electrode (RHE). The Ni3N/MCNT catalyst could operate under weakly acidic conditions in the pH range of 2.5–7.2. Even at pH 2.5, the CO Faradaic efficiency remained at 50.1%, demonstrating the high selectivity for CO2 reduction. The high catalyst selectivity could be due to increased adsorption of CO2 on the Ni3N surface, which can compete with hydrogen evolution under acidic conditions.</description><issn>2168-0485</issn><issn>2168-0485</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpVkNtKAzEQhoMoWGofQcgLbM1hk81elqUeoLag9nrJYVpT4y5usopvb4q90Ln5h_nhG_gQuqZkTgmjN9rGOEb7Cu_Q7efKEMkqdYYmjEpVkFKJ8z_7JZrFeCB56pozRSfoY2G98xYvA9g09EeOtzrgJ3CjTb7vcL_DzYbhbfTdHq-9fYOQIw3eAc714xiS_9IhgMONHkw-rXXXp9EA1hE_wxHsPyGXSYfvmK7QxU6HCLNTTtH2dvnS3Berzd1Ds1gVmkmeCsmdKq0TwIUBzkUtma5LJo2wqq640ZZTWgOprCZSU1ISqoU1nHJXWyM4nyL6y82G2kM_Dl3-1lLSHrW1_7S1J238B7m5ZXg</recordid><startdate>20190318</startdate><enddate>20190318</enddate><creator>Wang, Zhuo</creator><creator>Hou, Pengfei</creator><creator>Wang, Yulin</creator><creator>Xiang, Xu</creator><creator>Kang, Peng</creator><general>American Chemical Society</general><scope/><orcidid>https://orcid.org/0000-0002-6639-8299</orcidid><orcidid>https://orcid.org/0000-0003-1089-6210</orcidid></search><sort><creationdate>20190318</creationdate><title>Acidic Electrochemical Reduction of CO2 Using Nickel Nitride on Multiwalled Carbon Nanotube as Selective Catalyst</title><author>Wang, Zhuo ; Hou, Pengfei ; Wang, Yulin ; Xiang, Xu ; Kang, Peng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a263t-63d84cd5e35be335962a9426b5c8973bac3119e07ca06a10401a5cb313d9cb533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Zhuo</creatorcontrib><creatorcontrib>Hou, Pengfei</creatorcontrib><creatorcontrib>Wang, Yulin</creatorcontrib><creatorcontrib>Xiang, Xu</creatorcontrib><creatorcontrib>Kang, Peng</creatorcontrib><jtitle>ACS sustainable chemistry & engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Zhuo</au><au>Hou, Pengfei</au><au>Wang, Yulin</au><au>Xiang, Xu</au><au>Kang, Peng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Acidic Electrochemical Reduction of CO2 Using Nickel Nitride on Multiwalled Carbon Nanotube as Selective Catalyst</atitle><jtitle>ACS sustainable chemistry & engineering</jtitle><addtitle>ACS Sustainable Chem. Eng</addtitle><date>2019-03-18</date><risdate>2019</risdate><volume>7</volume><issue>6</issue><spage>6106</spage><epage>6112</epage><pages>6106-6112</pages><issn>2168-0485</issn><eissn>2168-0485</eissn><abstract>Ni3N/MCNT (multiwalled carbon nanotube) nanocomposites fabricated by ammonolysis displayed high CO2 electrochemical reduction reactivity with CO Faradaic efficiencies of 89.0% and current density of 6.5 mA cm–2 at −0.73 V vs reversible hydrogen electrode (RHE). The Ni3N/MCNT catalyst could operate under weakly acidic conditions in the pH range of 2.5–7.2. Even at pH 2.5, the CO Faradaic efficiency remained at 50.1%, demonstrating the high selectivity for CO2 reduction. The high catalyst selectivity could be due to increased adsorption of CO2 on the Ni3N surface, which can compete with hydrogen evolution under acidic conditions.</abstract><pub>American Chemical Society</pub><doi>10.1021/acssuschemeng.8b06278</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-6639-8299</orcidid><orcidid>https://orcid.org/0000-0003-1089-6210</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2168-0485 |
ispartof | ACS sustainable chemistry & engineering, 2019-03, Vol.7 (6), p.6106-6112 |
issn | 2168-0485 2168-0485 |
language | eng |
recordid | cdi_acs_journals_10_1021_acssuschemeng_8b06278 |
source | American Chemical Society Journals |
title | Acidic Electrochemical Reduction of CO2 Using Nickel Nitride on Multiwalled Carbon Nanotube as Selective Catalyst |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T23%3A21%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Acidic%20Electrochemical%20Reduction%20of%20CO2%20Using%20Nickel%20Nitride%20on%20Multiwalled%20Carbon%20Nanotube%20as%20Selective%20Catalyst&rft.jtitle=ACS%20sustainable%20chemistry%20&%20engineering&rft.au=Wang,%20Zhuo&rft.date=2019-03-18&rft.volume=7&rft.issue=6&rft.spage=6106&rft.epage=6112&rft.pages=6106-6112&rft.issn=2168-0485&rft.eissn=2168-0485&rft_id=info:doi/10.1021/acssuschemeng.8b06278&rft_dat=%3Cacs%3Ea031425736%3C/acs%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |