Computer-Aided Design of Ionic Liquids as Absorbent for Gas Separation Exemplified by CO2 Capture Cases

In order to design ionic liquids as absorbents for gas separation, a systematic computer-aided ionic liquid design (CAILD) methodology is applied and demonstrated by three cases of CO2 capture. Mixed-integer nonlinear programming problems are formulated, where a mass-based Absorption-Selectivity-Des...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS sustainable chemistry & engineering 2018-09, Vol.6 (9), p.12025-12035
Hauptverfasser: Wang, Jingwen, Song, Zhen, Cheng, Hongye, Chen, Lifang, Deng, Liyuan, Qi, Zhiwen
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12035
container_issue 9
container_start_page 12025
container_title ACS sustainable chemistry & engineering
container_volume 6
creator Wang, Jingwen
Song, Zhen
Cheng, Hongye
Chen, Lifang
Deng, Liyuan
Qi, Zhiwen
description In order to design ionic liquids as absorbents for gas separation, a systematic computer-aided ionic liquid design (CAILD) methodology is applied and demonstrated by three cases of CO2 capture. Mixed-integer nonlinear programming problems are formulated, where a mass-based Absorption-Selectivity-Desorption index (ASDI) integrating the most important thermodynamic properties of ILs (i.e., gas solubility, selectivity, and desorption capacity) is proposed as the objective function and calculated by the COSMO-GC-IL inputted COSMO-SAC model. The physical properties of ionic liquids are implemented as optimization constraints, which are estimated by semiempirical models. The reliability of the thermodynamic method for IL-gas systems is validated first by comparing a large number of experimental and calculated data of Henry’s law constant of different gases in ILs. Then, comparative CAILD studies are performed for CO2 separation from flue gas (CO2/N2) to demonstrate the importance of ASDI for identifying practically attractive ILs. Afterward, the developed method is applied to design IL solvents for the separation of CO2 from syngas (CO2/H2) and sour gas (CO2/H2S). The correspondingly designed ILs for each case ([OAc]− and COOH-functionalized pyridinium for CO2/H2 and CO2/N2; [AlCl4]− and long branched alkyl substituted pyridinium for CO2/H2S) are analyzed from the σ-profile point of view.
doi_str_mv 10.1021/acssuschemeng.8b02321
format Article
fullrecord <record><control><sourceid>acs</sourceid><recordid>TN_cdi_acs_journals_10_1021_acssuschemeng_8b02321</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a309547134</sourcerecordid><originalsourceid>FETCH-LOGICAL-a263t-c1da82cfd849db37fde88c78177305f86bf036c8b8a6a10d061ca6285f3e2a1a3</originalsourceid><addsrcrecordid>eNpVkM9Kw0AYxBdRsNQ-grAvkLrfbrPZHkustRDoQT2H_fNt3NJmYzYBfXsj9qBzmWEOM_Aj5B7YEhiHB21TGpN9xzO2zVIZxgWHKzLjIFXGViq__pNvySKlI5u0XguuYEaaMp67ccA-2wSHjj5iCk1Lo6f72AZLq_AxBpeoTnRjUuwNtgP1sae7qXnBTvd6CLGl2088d6fgw7Rhvmh54LTU3TD2OHnCdEduvD4lXFx8Tt6etq_lc1YddvtyU2WaSzFkFpxW3HqnVmtnROEdKmULBUUhWO6VNJ4JaZVRWmpgjkmwWnKVe4FcgxZzAr-7E5f6GMe-nd5qYPUPrPofrPoCS3wDF9hh0g</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Computer-Aided Design of Ionic Liquids as Absorbent for Gas Separation Exemplified by CO2 Capture Cases</title><source>American Chemical Society Journals</source><creator>Wang, Jingwen ; Song, Zhen ; Cheng, Hongye ; Chen, Lifang ; Deng, Liyuan ; Qi, Zhiwen</creator><creatorcontrib>Wang, Jingwen ; Song, Zhen ; Cheng, Hongye ; Chen, Lifang ; Deng, Liyuan ; Qi, Zhiwen</creatorcontrib><description>In order to design ionic liquids as absorbents for gas separation, a systematic computer-aided ionic liquid design (CAILD) methodology is applied and demonstrated by three cases of CO2 capture. Mixed-integer nonlinear programming problems are formulated, where a mass-based Absorption-Selectivity-Desorption index (ASDI) integrating the most important thermodynamic properties of ILs (i.e., gas solubility, selectivity, and desorption capacity) is proposed as the objective function and calculated by the COSMO-GC-IL inputted COSMO-SAC model. The physical properties of ionic liquids are implemented as optimization constraints, which are estimated by semiempirical models. The reliability of the thermodynamic method for IL-gas systems is validated first by comparing a large number of experimental and calculated data of Henry’s law constant of different gases in ILs. Then, comparative CAILD studies are performed for CO2 separation from flue gas (CO2/N2) to demonstrate the importance of ASDI for identifying practically attractive ILs. Afterward, the developed method is applied to design IL solvents for the separation of CO2 from syngas (CO2/H2) and sour gas (CO2/H2S). The correspondingly designed ILs for each case ([OAc]− and COOH-functionalized pyridinium for CO2/H2 and CO2/N2; [AlCl4]− and long branched alkyl substituted pyridinium for CO2/H2S) are analyzed from the σ-profile point of view.</description><identifier>ISSN: 2168-0485</identifier><identifier>EISSN: 2168-0485</identifier><identifier>DOI: 10.1021/acssuschemeng.8b02321</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS sustainable chemistry &amp; engineering, 2018-09, Vol.6 (9), p.12025-12035</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-4119-3182 ; 0000-0003-2037-2234 ; 0000-0001-9004-8056</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acssuschemeng.8b02321$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acssuschemeng.8b02321$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Wang, Jingwen</creatorcontrib><creatorcontrib>Song, Zhen</creatorcontrib><creatorcontrib>Cheng, Hongye</creatorcontrib><creatorcontrib>Chen, Lifang</creatorcontrib><creatorcontrib>Deng, Liyuan</creatorcontrib><creatorcontrib>Qi, Zhiwen</creatorcontrib><title>Computer-Aided Design of Ionic Liquids as Absorbent for Gas Separation Exemplified by CO2 Capture Cases</title><title>ACS sustainable chemistry &amp; engineering</title><addtitle>ACS Sustainable Chem. Eng</addtitle><description>In order to design ionic liquids as absorbents for gas separation, a systematic computer-aided ionic liquid design (CAILD) methodology is applied and demonstrated by three cases of CO2 capture. Mixed-integer nonlinear programming problems are formulated, where a mass-based Absorption-Selectivity-Desorption index (ASDI) integrating the most important thermodynamic properties of ILs (i.e., gas solubility, selectivity, and desorption capacity) is proposed as the objective function and calculated by the COSMO-GC-IL inputted COSMO-SAC model. The physical properties of ionic liquids are implemented as optimization constraints, which are estimated by semiempirical models. The reliability of the thermodynamic method for IL-gas systems is validated first by comparing a large number of experimental and calculated data of Henry’s law constant of different gases in ILs. Then, comparative CAILD studies are performed for CO2 separation from flue gas (CO2/N2) to demonstrate the importance of ASDI for identifying practically attractive ILs. Afterward, the developed method is applied to design IL solvents for the separation of CO2 from syngas (CO2/H2) and sour gas (CO2/H2S). The correspondingly designed ILs for each case ([OAc]− and COOH-functionalized pyridinium for CO2/H2 and CO2/N2; [AlCl4]− and long branched alkyl substituted pyridinium for CO2/H2S) are analyzed from the σ-profile point of view.</description><issn>2168-0485</issn><issn>2168-0485</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpVkM9Kw0AYxBdRsNQ-grAvkLrfbrPZHkustRDoQT2H_fNt3NJmYzYBfXsj9qBzmWEOM_Aj5B7YEhiHB21TGpN9xzO2zVIZxgWHKzLjIFXGViq__pNvySKlI5u0XguuYEaaMp67ccA-2wSHjj5iCk1Lo6f72AZLq_AxBpeoTnRjUuwNtgP1sae7qXnBTvd6CLGl2088d6fgw7Rhvmh54LTU3TD2OHnCdEduvD4lXFx8Tt6etq_lc1YddvtyU2WaSzFkFpxW3HqnVmtnROEdKmULBUUhWO6VNJ4JaZVRWmpgjkmwWnKVe4FcgxZzAr-7E5f6GMe-nd5qYPUPrPofrPoCS3wDF9hh0g</recordid><startdate>20180904</startdate><enddate>20180904</enddate><creator>Wang, Jingwen</creator><creator>Song, Zhen</creator><creator>Cheng, Hongye</creator><creator>Chen, Lifang</creator><creator>Deng, Liyuan</creator><creator>Qi, Zhiwen</creator><general>American Chemical Society</general><scope/><orcidid>https://orcid.org/0000-0002-4119-3182</orcidid><orcidid>https://orcid.org/0000-0003-2037-2234</orcidid><orcidid>https://orcid.org/0000-0001-9004-8056</orcidid></search><sort><creationdate>20180904</creationdate><title>Computer-Aided Design of Ionic Liquids as Absorbent for Gas Separation Exemplified by CO2 Capture Cases</title><author>Wang, Jingwen ; Song, Zhen ; Cheng, Hongye ; Chen, Lifang ; Deng, Liyuan ; Qi, Zhiwen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a263t-c1da82cfd849db37fde88c78177305f86bf036c8b8a6a10d061ca6285f3e2a1a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Jingwen</creatorcontrib><creatorcontrib>Song, Zhen</creatorcontrib><creatorcontrib>Cheng, Hongye</creatorcontrib><creatorcontrib>Chen, Lifang</creatorcontrib><creatorcontrib>Deng, Liyuan</creatorcontrib><creatorcontrib>Qi, Zhiwen</creatorcontrib><jtitle>ACS sustainable chemistry &amp; engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Jingwen</au><au>Song, Zhen</au><au>Cheng, Hongye</au><au>Chen, Lifang</au><au>Deng, Liyuan</au><au>Qi, Zhiwen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computer-Aided Design of Ionic Liquids as Absorbent for Gas Separation Exemplified by CO2 Capture Cases</atitle><jtitle>ACS sustainable chemistry &amp; engineering</jtitle><addtitle>ACS Sustainable Chem. Eng</addtitle><date>2018-09-04</date><risdate>2018</risdate><volume>6</volume><issue>9</issue><spage>12025</spage><epage>12035</epage><pages>12025-12035</pages><issn>2168-0485</issn><eissn>2168-0485</eissn><abstract>In order to design ionic liquids as absorbents for gas separation, a systematic computer-aided ionic liquid design (CAILD) methodology is applied and demonstrated by three cases of CO2 capture. Mixed-integer nonlinear programming problems are formulated, where a mass-based Absorption-Selectivity-Desorption index (ASDI) integrating the most important thermodynamic properties of ILs (i.e., gas solubility, selectivity, and desorption capacity) is proposed as the objective function and calculated by the COSMO-GC-IL inputted COSMO-SAC model. The physical properties of ionic liquids are implemented as optimization constraints, which are estimated by semiempirical models. The reliability of the thermodynamic method for IL-gas systems is validated first by comparing a large number of experimental and calculated data of Henry’s law constant of different gases in ILs. Then, comparative CAILD studies are performed for CO2 separation from flue gas (CO2/N2) to demonstrate the importance of ASDI for identifying practically attractive ILs. Afterward, the developed method is applied to design IL solvents for the separation of CO2 from syngas (CO2/H2) and sour gas (CO2/H2S). The correspondingly designed ILs for each case ([OAc]− and COOH-functionalized pyridinium for CO2/H2 and CO2/N2; [AlCl4]− and long branched alkyl substituted pyridinium for CO2/H2S) are analyzed from the σ-profile point of view.</abstract><pub>American Chemical Society</pub><doi>10.1021/acssuschemeng.8b02321</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-4119-3182</orcidid><orcidid>https://orcid.org/0000-0003-2037-2234</orcidid><orcidid>https://orcid.org/0000-0001-9004-8056</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2168-0485
ispartof ACS sustainable chemistry & engineering, 2018-09, Vol.6 (9), p.12025-12035
issn 2168-0485
2168-0485
language eng
recordid cdi_acs_journals_10_1021_acssuschemeng_8b02321
source American Chemical Society Journals
title Computer-Aided Design of Ionic Liquids as Absorbent for Gas Separation Exemplified by CO2 Capture Cases
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T05%3A20%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computer-Aided%20Design%20of%20Ionic%20Liquids%20as%20Absorbent%20for%20Gas%20Separation%20Exemplified%20by%20CO2%20Capture%20Cases&rft.jtitle=ACS%20sustainable%20chemistry%20&%20engineering&rft.au=Wang,%20Jingwen&rft.date=2018-09-04&rft.volume=6&rft.issue=9&rft.spage=12025&rft.epage=12035&rft.pages=12025-12035&rft.issn=2168-0485&rft.eissn=2168-0485&rft_id=info:doi/10.1021/acssuschemeng.8b02321&rft_dat=%3Cacs%3Ea309547134%3C/acs%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true