MnO2 Nanoflake-Shelled Carbon Nanotube Particles for High-Performance Supercapacitors

We introduce MnO2 nanoflake/carbon nanotube (CNT) core–shell particles for high-performance supercapacitors. The CNT particles prepared by drying the CNT-dispersed aerosol produce a tightly intertwined CNT assembly by internal capillary force, and the subsequent growth of MnO2 on the CNT surface pro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS sustainable chemistry & engineering 2017-03, Vol.5 (3), p.2445-2453
Hauptverfasser: Gueon, Donghee, Moon, Jun Hyuk
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2453
container_issue 3
container_start_page 2445
container_title ACS sustainable chemistry & engineering
container_volume 5
creator Gueon, Donghee
Moon, Jun Hyuk
description We introduce MnO2 nanoflake/carbon nanotube (CNT) core–shell particles for high-performance supercapacitors. The CNT particles prepared by drying the CNT-dispersed aerosol produce a tightly intertwined CNT assembly by internal capillary force, and the subsequent growth of MnO2 on the CNT surface produces a high surface area MnO2 nanoflake shell. We control the amount of MnO2 decoration on the CNT particles and obtain a specific capacitance of 370 F/g at current density of 0.5 A/g upon their supercapacitor electrode application. This capacitance is 14 times higher than that of bare CNT particles and 3 times higher than that of bare MnO2 particles. An asymmetric capacitor based on the MnO2/CNT particle is assembled. The capacitor reveals a remarkably high power density of 225 W/kg. This performance is attributed to the contribution of the high pseudocapacitance of a compact MnO2 nanoflake and the high electrical conductivity of CNT particles with compact packing.
doi_str_mv 10.1021/acssuschemeng.6b02803
format Article
fullrecord <record><control><sourceid>acs</sourceid><recordid>TN_cdi_acs_journals_10_1021_acssuschemeng_6b02803</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>d170162501</sourcerecordid><originalsourceid>FETCH-LOGICAL-a263t-314b8f1f4baee34820db5cfdfc83072306caeccd44d3862ed215e5076d87ebc33</originalsourceid><addsrcrecordid>eNpVkNtKAzEYhIMoWGofQcgLpOa02fRSilqh2kLt9ZLDn-7WbbYku-_vqr3QuZmBgRn4ELpndM4oZw_G5TxkV8MJ4mGuLOWaiis04UxpQqUurv_kWzTL-UhHLRaCazZB-7e44fjdxC605hPIroa2BY-XJtku_hT9YAFvTeob10LGoUt41RxqsoU05pOJDvBuOENy5mxc03cp36GbYNoMs4tP0f756WO5IuvNy-vycU0MV6IngkmrAwvSGgAhNafeFi744LSgJRdUOQPOeSm90IqD56yAgpbK6xKsE2KK2O_uSKE6dkOK41vFaPWNpvqHprqgEV9Qvly-</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>MnO2 Nanoflake-Shelled Carbon Nanotube Particles for High-Performance Supercapacitors</title><source>ACS Publications</source><creator>Gueon, Donghee ; Moon, Jun Hyuk</creator><creatorcontrib>Gueon, Donghee ; Moon, Jun Hyuk</creatorcontrib><description>We introduce MnO2 nanoflake/carbon nanotube (CNT) core–shell particles for high-performance supercapacitors. The CNT particles prepared by drying the CNT-dispersed aerosol produce a tightly intertwined CNT assembly by internal capillary force, and the subsequent growth of MnO2 on the CNT surface produces a high surface area MnO2 nanoflake shell. We control the amount of MnO2 decoration on the CNT particles and obtain a specific capacitance of 370 F/g at current density of 0.5 A/g upon their supercapacitor electrode application. This capacitance is 14 times higher than that of bare CNT particles and 3 times higher than that of bare MnO2 particles. An asymmetric capacitor based on the MnO2/CNT particle is assembled. The capacitor reveals a remarkably high power density of 225 W/kg. This performance is attributed to the contribution of the high pseudocapacitance of a compact MnO2 nanoflake and the high electrical conductivity of CNT particles with compact packing.</description><identifier>ISSN: 2168-0485</identifier><identifier>EISSN: 2168-0485</identifier><identifier>DOI: 10.1021/acssuschemeng.6b02803</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS sustainable chemistry &amp; engineering, 2017-03, Vol.5 (3), p.2445-2453</ispartof><rights>Copyright © 2017 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-4776-3115</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acssuschemeng.6b02803$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acssuschemeng.6b02803$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Gueon, Donghee</creatorcontrib><creatorcontrib>Moon, Jun Hyuk</creatorcontrib><title>MnO2 Nanoflake-Shelled Carbon Nanotube Particles for High-Performance Supercapacitors</title><title>ACS sustainable chemistry &amp; engineering</title><addtitle>ACS Sustainable Chem. Eng</addtitle><description>We introduce MnO2 nanoflake/carbon nanotube (CNT) core–shell particles for high-performance supercapacitors. The CNT particles prepared by drying the CNT-dispersed aerosol produce a tightly intertwined CNT assembly by internal capillary force, and the subsequent growth of MnO2 on the CNT surface produces a high surface area MnO2 nanoflake shell. We control the amount of MnO2 decoration on the CNT particles and obtain a specific capacitance of 370 F/g at current density of 0.5 A/g upon their supercapacitor electrode application. This capacitance is 14 times higher than that of bare CNT particles and 3 times higher than that of bare MnO2 particles. An asymmetric capacitor based on the MnO2/CNT particle is assembled. The capacitor reveals a remarkably high power density of 225 W/kg. This performance is attributed to the contribution of the high pseudocapacitance of a compact MnO2 nanoflake and the high electrical conductivity of CNT particles with compact packing.</description><issn>2168-0485</issn><issn>2168-0485</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpVkNtKAzEYhIMoWGofQcgLpOa02fRSilqh2kLt9ZLDn-7WbbYku-_vqr3QuZmBgRn4ELpndM4oZw_G5TxkV8MJ4mGuLOWaiis04UxpQqUurv_kWzTL-UhHLRaCazZB-7e44fjdxC605hPIroa2BY-XJtku_hT9YAFvTeob10LGoUt41RxqsoU05pOJDvBuOENy5mxc03cp36GbYNoMs4tP0f756WO5IuvNy-vycU0MV6IngkmrAwvSGgAhNafeFi744LSgJRdUOQPOeSm90IqD56yAgpbK6xKsE2KK2O_uSKE6dkOK41vFaPWNpvqHprqgEV9Qvly-</recordid><startdate>20170306</startdate><enddate>20170306</enddate><creator>Gueon, Donghee</creator><creator>Moon, Jun Hyuk</creator><general>American Chemical Society</general><scope/><orcidid>https://orcid.org/0000-0002-4776-3115</orcidid></search><sort><creationdate>20170306</creationdate><title>MnO2 Nanoflake-Shelled Carbon Nanotube Particles for High-Performance Supercapacitors</title><author>Gueon, Donghee ; Moon, Jun Hyuk</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a263t-314b8f1f4baee34820db5cfdfc83072306caeccd44d3862ed215e5076d87ebc33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gueon, Donghee</creatorcontrib><creatorcontrib>Moon, Jun Hyuk</creatorcontrib><jtitle>ACS sustainable chemistry &amp; engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gueon, Donghee</au><au>Moon, Jun Hyuk</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MnO2 Nanoflake-Shelled Carbon Nanotube Particles for High-Performance Supercapacitors</atitle><jtitle>ACS sustainable chemistry &amp; engineering</jtitle><addtitle>ACS Sustainable Chem. Eng</addtitle><date>2017-03-06</date><risdate>2017</risdate><volume>5</volume><issue>3</issue><spage>2445</spage><epage>2453</epage><pages>2445-2453</pages><issn>2168-0485</issn><eissn>2168-0485</eissn><abstract>We introduce MnO2 nanoflake/carbon nanotube (CNT) core–shell particles for high-performance supercapacitors. The CNT particles prepared by drying the CNT-dispersed aerosol produce a tightly intertwined CNT assembly by internal capillary force, and the subsequent growth of MnO2 on the CNT surface produces a high surface area MnO2 nanoflake shell. We control the amount of MnO2 decoration on the CNT particles and obtain a specific capacitance of 370 F/g at current density of 0.5 A/g upon their supercapacitor electrode application. This capacitance is 14 times higher than that of bare CNT particles and 3 times higher than that of bare MnO2 particles. An asymmetric capacitor based on the MnO2/CNT particle is assembled. The capacitor reveals a remarkably high power density of 225 W/kg. This performance is attributed to the contribution of the high pseudocapacitance of a compact MnO2 nanoflake and the high electrical conductivity of CNT particles with compact packing.</abstract><pub>American Chemical Society</pub><doi>10.1021/acssuschemeng.6b02803</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-4776-3115</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2168-0485
ispartof ACS sustainable chemistry & engineering, 2017-03, Vol.5 (3), p.2445-2453
issn 2168-0485
2168-0485
language eng
recordid cdi_acs_journals_10_1021_acssuschemeng_6b02803
source ACS Publications
title MnO2 Nanoflake-Shelled Carbon Nanotube Particles for High-Performance Supercapacitors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T15%3A37%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MnO2%20Nanoflake-Shelled%20Carbon%20Nanotube%20Particles%20for%20High-Performance%20Supercapacitors&rft.jtitle=ACS%20sustainable%20chemistry%20&%20engineering&rft.au=Gueon,%20Donghee&rft.date=2017-03-06&rft.volume=5&rft.issue=3&rft.spage=2445&rft.epage=2453&rft.pages=2445-2453&rft.issn=2168-0485&rft.eissn=2168-0485&rft_id=info:doi/10.1021/acssuschemeng.6b02803&rft_dat=%3Cacs%3Ed170162501%3C/acs%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true