Coupling Enhanced Piezo-Photocatalysis on Robust Intergrowth Ferroelectric SrBi8Ti7O27 Nanosheets

Piezo-photocatalysis is an emerging approach that combines the piezoelectric effect with the optical properties of a semiconductor to promote the effective separation of charge carriers. However, current piezocatalytic materials often suffer from poor catalytic efficiency and limited practicality du...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS sustainable chemistry & engineering 2024-07, Vol.12 (26), p.9947-9956
Hauptverfasser: Yu, Hongjian, Ji, Yuanyuan, Zhang, Yan, Tu, Shuchen, Boong, Siew Kheng, Lee, Hiang Kwee, Guo, Fan, Zhou, Chuanqiang, Han, Jie
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Piezo-photocatalysis is an emerging approach that combines the piezoelectric effect with the optical properties of a semiconductor to promote the effective separation of charge carriers. However, current piezocatalytic materials often suffer from poor catalytic efficiency and limited practicality due to a weak built-in electric field induced by mechanical energy. Herein, we introduce unique intergrowth ferroelectric semiconductor SrBi8Ti7O27 nanosheets as a green and high-performance piezo-photocatalyst for CO2 reduction and pollutant degradation. Compared to single ferroelectrics Bi4Ti3O12 and SrBi4Ti4O15, intergrowth ferroelectric SrBi8Ti7O27, with the strongest spontaneous polarization electric field, achieves superior piezo-photocatalytic CO2-to-CO conversion (361.34 μmol g–1 h–1). Moreover, our design also degrades high-concentration organic pollutants (100 mg/L) with up to ∼100% efficiency within 60 min, notably outperforming most standalone and untreated piezo-photocatalysts reported to date. These findings provide valuable insights for the development of highly efficient and multifunctional piezo-photocatalysts for green sustainable energy, environmental, and chemical applications.
ISSN:2168-0485
2168-0485
DOI:10.1021/acssuschemeng.4c02771