Bimetallic B‑Site Halide Perovskites for Enhanced Photocatalytic CO2 Reduction

Artificial photosynthesis by the capturing and conversion of CO2 to value-added fuels is an attractive avenue to solve the greenhouse effect and energy crisis issues. In the recent decade, lead halide perovskites (HPs) have evoked considerable interest in the photocatalysis field, particularly for C...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS sustainable chemistry & engineering 2024-09, Vol.12 (36), p.13427-13437
Hauptverfasser: Lee, Jiale, Zhu, Enquan, Kok, Steven Hao Wan, Chong, Wei-Kean, Low, Jingxiang, Tanksale, Akshat, Chai, Siang-Piao, Tan, Lling-Lling
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13437
container_issue 36
container_start_page 13427
container_title ACS sustainable chemistry & engineering
container_volume 12
creator Lee, Jiale
Zhu, Enquan
Kok, Steven Hao Wan
Chong, Wei-Kean
Low, Jingxiang
Tanksale, Akshat
Chai, Siang-Piao
Tan, Lling-Lling
description Artificial photosynthesis by the capturing and conversion of CO2 to value-added fuels is an attractive avenue to solve the greenhouse effect and energy crisis issues. In the recent decade, lead halide perovskites (HPs) have evoked considerable interest in the photocatalysis field, particularly for CO2 reduction. However, their inherent toxicity toward the environment and human health greatly restricts their practical applications, prompting the search for lead-free alternatives with excellent optoelectronic traits and catalytic performance. Herein, a series of all-inorganic bimetallic mixed HPs Cs3Sb2–y Bi y Cl4Br5 (0 ≤ y ≤ 2) was developed and studied for CO2 photoreduction. Among the samples with varying bismuth and antimony compositions, Cs3Sb0.5Bi1.5Cl4Br5 (CSBX-1.5) demonstrated the best photocatalytic performance, with a CH4 yield of 6.28 μmol g–1 under visible-light irradiation (λ ≥ 410 nm) for 6 h and a continuous supply of humidified CO2 gas flow. Computational studies revealed the effect of B-site metal incorporation toward the Br p-band center, where charge delocalization around the active halogen site was notably enriched for greater CO2 adsorption and activation. Experimental characterization and photoelectrochemical studies further uncovered the narrower bandgap, higher reduction potential, prolonged charge carrier lifetime, and lower electron–hole recombination of CSBX-1.5. This work provides insights into the bimetallic approach for enhanced photocatalytic performance of lead-free HPs and elucidates the tuning of their optoelectronic properties for robust band structure tailoring.
doi_str_mv 10.1021/acssuschemeng.4c01348
format Article
fullrecord <record><control><sourceid>acs</sourceid><recordid>TN_cdi_acs_journals_10_1021_acssuschemeng_4c01348</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c801685219</sourcerecordid><originalsourceid>FETCH-LOGICAL-a127t-128dc79abee16b76e48e3e5e1caa820e8243b8c9a865152d0f9ac7c67f584ad63</originalsourceid><addsrcrecordid>eNpVkN1Kw0AQRhdRsNQ-grAvkLqzSTabSxuqLRQa_LkOk92JSU2zkE0E73wFX9EnMWIv9LuZj4EzA4exaxBLEBJu0Hg_elPTkbqXZWQEhJE-YzMJSgci0vH5n37JFt4fxJQ0DaWGGctXzZEGbNvG8NXXx-djMxDfYNtY4jn17s2_ThvPK9fzdVdjZ8jyvHaDMzhh78PEZXvJH8iOZmhcd8UuKmw9LU5zzp7v1k_ZJtjt77fZ7S5AkMkQgNTWJCmWRKDKRFGkKaSYwCBqKUjLKCy1SVGrGGJpRZWiSYxKqlhHaFU4Z_B7dxJQHNzYd9O3AkTxY6X4Z6U4WQm_AejbW0U</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Bimetallic B‑Site Halide Perovskites for Enhanced Photocatalytic CO2 Reduction</title><source>American Chemical Society Journals</source><creator>Lee, Jiale ; Zhu, Enquan ; Kok, Steven Hao Wan ; Chong, Wei-Kean ; Low, Jingxiang ; Tanksale, Akshat ; Chai, Siang-Piao ; Tan, Lling-Lling</creator><creatorcontrib>Lee, Jiale ; Zhu, Enquan ; Kok, Steven Hao Wan ; Chong, Wei-Kean ; Low, Jingxiang ; Tanksale, Akshat ; Chai, Siang-Piao ; Tan, Lling-Lling</creatorcontrib><description>Artificial photosynthesis by the capturing and conversion of CO2 to value-added fuels is an attractive avenue to solve the greenhouse effect and energy crisis issues. In the recent decade, lead halide perovskites (HPs) have evoked considerable interest in the photocatalysis field, particularly for CO2 reduction. However, their inherent toxicity toward the environment and human health greatly restricts their practical applications, prompting the search for lead-free alternatives with excellent optoelectronic traits and catalytic performance. Herein, a series of all-inorganic bimetallic mixed HPs Cs3Sb2–y Bi y Cl4Br5 (0 ≤ y ≤ 2) was developed and studied for CO2 photoreduction. Among the samples with varying bismuth and antimony compositions, Cs3Sb0.5Bi1.5Cl4Br5 (CSBX-1.5) demonstrated the best photocatalytic performance, with a CH4 yield of 6.28 μmol g–1 under visible-light irradiation (λ ≥ 410 nm) for 6 h and a continuous supply of humidified CO2 gas flow. Computational studies revealed the effect of B-site metal incorporation toward the Br p-band center, where charge delocalization around the active halogen site was notably enriched for greater CO2 adsorption and activation. Experimental characterization and photoelectrochemical studies further uncovered the narrower bandgap, higher reduction potential, prolonged charge carrier lifetime, and lower electron–hole recombination of CSBX-1.5. This work provides insights into the bimetallic approach for enhanced photocatalytic performance of lead-free HPs and elucidates the tuning of their optoelectronic properties for robust band structure tailoring.</description><identifier>ISSN: 2168-0485</identifier><identifier>EISSN: 2168-0485</identifier><identifier>DOI: 10.1021/acssuschemeng.4c01348</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS sustainable chemistry &amp; engineering, 2024-09, Vol.12 (36), p.13427-13437</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-1030-9592 ; 0000-0001-9233-4427 ; 0000-0002-2486-6357 ; 0000-0002-8635-1762 ; 0000-0002-3766-8413 ; 0000-0002-7087-0912</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acssuschemeng.4c01348$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acssuschemeng.4c01348$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Lee, Jiale</creatorcontrib><creatorcontrib>Zhu, Enquan</creatorcontrib><creatorcontrib>Kok, Steven Hao Wan</creatorcontrib><creatorcontrib>Chong, Wei-Kean</creatorcontrib><creatorcontrib>Low, Jingxiang</creatorcontrib><creatorcontrib>Tanksale, Akshat</creatorcontrib><creatorcontrib>Chai, Siang-Piao</creatorcontrib><creatorcontrib>Tan, Lling-Lling</creatorcontrib><title>Bimetallic B‑Site Halide Perovskites for Enhanced Photocatalytic CO2 Reduction</title><title>ACS sustainable chemistry &amp; engineering</title><addtitle>ACS Sustainable Chem. Eng</addtitle><description>Artificial photosynthesis by the capturing and conversion of CO2 to value-added fuels is an attractive avenue to solve the greenhouse effect and energy crisis issues. In the recent decade, lead halide perovskites (HPs) have evoked considerable interest in the photocatalysis field, particularly for CO2 reduction. However, their inherent toxicity toward the environment and human health greatly restricts their practical applications, prompting the search for lead-free alternatives with excellent optoelectronic traits and catalytic performance. Herein, a series of all-inorganic bimetallic mixed HPs Cs3Sb2–y Bi y Cl4Br5 (0 ≤ y ≤ 2) was developed and studied for CO2 photoreduction. Among the samples with varying bismuth and antimony compositions, Cs3Sb0.5Bi1.5Cl4Br5 (CSBX-1.5) demonstrated the best photocatalytic performance, with a CH4 yield of 6.28 μmol g–1 under visible-light irradiation (λ ≥ 410 nm) for 6 h and a continuous supply of humidified CO2 gas flow. Computational studies revealed the effect of B-site metal incorporation toward the Br p-band center, where charge delocalization around the active halogen site was notably enriched for greater CO2 adsorption and activation. Experimental characterization and photoelectrochemical studies further uncovered the narrower bandgap, higher reduction potential, prolonged charge carrier lifetime, and lower electron–hole recombination of CSBX-1.5. This work provides insights into the bimetallic approach for enhanced photocatalytic performance of lead-free HPs and elucidates the tuning of their optoelectronic properties for robust band structure tailoring.</description><issn>2168-0485</issn><issn>2168-0485</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpVkN1Kw0AQRhdRsNQ-grAvkLqzSTabSxuqLRQa_LkOk92JSU2zkE0E73wFX9EnMWIv9LuZj4EzA4exaxBLEBJu0Hg_elPTkbqXZWQEhJE-YzMJSgci0vH5n37JFt4fxJQ0DaWGGctXzZEGbNvG8NXXx-djMxDfYNtY4jn17s2_ThvPK9fzdVdjZ8jyvHaDMzhh78PEZXvJH8iOZmhcd8UuKmw9LU5zzp7v1k_ZJtjt77fZ7S5AkMkQgNTWJCmWRKDKRFGkKaSYwCBqKUjLKCy1SVGrGGJpRZWiSYxKqlhHaFU4Z_B7dxJQHNzYd9O3AkTxY6X4Z6U4WQm_AejbW0U</recordid><startdate>20240909</startdate><enddate>20240909</enddate><creator>Lee, Jiale</creator><creator>Zhu, Enquan</creator><creator>Kok, Steven Hao Wan</creator><creator>Chong, Wei-Kean</creator><creator>Low, Jingxiang</creator><creator>Tanksale, Akshat</creator><creator>Chai, Siang-Piao</creator><creator>Tan, Lling-Lling</creator><general>American Chemical Society</general><scope/><orcidid>https://orcid.org/0000-0002-1030-9592</orcidid><orcidid>https://orcid.org/0000-0001-9233-4427</orcidid><orcidid>https://orcid.org/0000-0002-2486-6357</orcidid><orcidid>https://orcid.org/0000-0002-8635-1762</orcidid><orcidid>https://orcid.org/0000-0002-3766-8413</orcidid><orcidid>https://orcid.org/0000-0002-7087-0912</orcidid></search><sort><creationdate>20240909</creationdate><title>Bimetallic B‑Site Halide Perovskites for Enhanced Photocatalytic CO2 Reduction</title><author>Lee, Jiale ; Zhu, Enquan ; Kok, Steven Hao Wan ; Chong, Wei-Kean ; Low, Jingxiang ; Tanksale, Akshat ; Chai, Siang-Piao ; Tan, Lling-Lling</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a127t-128dc79abee16b76e48e3e5e1caa820e8243b8c9a865152d0f9ac7c67f584ad63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Jiale</creatorcontrib><creatorcontrib>Zhu, Enquan</creatorcontrib><creatorcontrib>Kok, Steven Hao Wan</creatorcontrib><creatorcontrib>Chong, Wei-Kean</creatorcontrib><creatorcontrib>Low, Jingxiang</creatorcontrib><creatorcontrib>Tanksale, Akshat</creatorcontrib><creatorcontrib>Chai, Siang-Piao</creatorcontrib><creatorcontrib>Tan, Lling-Lling</creatorcontrib><jtitle>ACS sustainable chemistry &amp; engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Jiale</au><au>Zhu, Enquan</au><au>Kok, Steven Hao Wan</au><au>Chong, Wei-Kean</au><au>Low, Jingxiang</au><au>Tanksale, Akshat</au><au>Chai, Siang-Piao</au><au>Tan, Lling-Lling</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bimetallic B‑Site Halide Perovskites for Enhanced Photocatalytic CO2 Reduction</atitle><jtitle>ACS sustainable chemistry &amp; engineering</jtitle><addtitle>ACS Sustainable Chem. Eng</addtitle><date>2024-09-09</date><risdate>2024</risdate><volume>12</volume><issue>36</issue><spage>13427</spage><epage>13437</epage><pages>13427-13437</pages><issn>2168-0485</issn><eissn>2168-0485</eissn><abstract>Artificial photosynthesis by the capturing and conversion of CO2 to value-added fuels is an attractive avenue to solve the greenhouse effect and energy crisis issues. In the recent decade, lead halide perovskites (HPs) have evoked considerable interest in the photocatalysis field, particularly for CO2 reduction. However, their inherent toxicity toward the environment and human health greatly restricts their practical applications, prompting the search for lead-free alternatives with excellent optoelectronic traits and catalytic performance. Herein, a series of all-inorganic bimetallic mixed HPs Cs3Sb2–y Bi y Cl4Br5 (0 ≤ y ≤ 2) was developed and studied for CO2 photoreduction. Among the samples with varying bismuth and antimony compositions, Cs3Sb0.5Bi1.5Cl4Br5 (CSBX-1.5) demonstrated the best photocatalytic performance, with a CH4 yield of 6.28 μmol g–1 under visible-light irradiation (λ ≥ 410 nm) for 6 h and a continuous supply of humidified CO2 gas flow. Computational studies revealed the effect of B-site metal incorporation toward the Br p-band center, where charge delocalization around the active halogen site was notably enriched for greater CO2 adsorption and activation. Experimental characterization and photoelectrochemical studies further uncovered the narrower bandgap, higher reduction potential, prolonged charge carrier lifetime, and lower electron–hole recombination of CSBX-1.5. This work provides insights into the bimetallic approach for enhanced photocatalytic performance of lead-free HPs and elucidates the tuning of their optoelectronic properties for robust band structure tailoring.</abstract><pub>American Chemical Society</pub><doi>10.1021/acssuschemeng.4c01348</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-1030-9592</orcidid><orcidid>https://orcid.org/0000-0001-9233-4427</orcidid><orcidid>https://orcid.org/0000-0002-2486-6357</orcidid><orcidid>https://orcid.org/0000-0002-8635-1762</orcidid><orcidid>https://orcid.org/0000-0002-3766-8413</orcidid><orcidid>https://orcid.org/0000-0002-7087-0912</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2168-0485
ispartof ACS sustainable chemistry & engineering, 2024-09, Vol.12 (36), p.13427-13437
issn 2168-0485
2168-0485
language eng
recordid cdi_acs_journals_10_1021_acssuschemeng_4c01348
source American Chemical Society Journals
title Bimetallic B‑Site Halide Perovskites for Enhanced Photocatalytic CO2 Reduction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T15%3A35%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bimetallic%20B%E2%80%91Site%20Halide%20Perovskites%20for%20Enhanced%20Photocatalytic%20CO2%20Reduction&rft.jtitle=ACS%20sustainable%20chemistry%20&%20engineering&rft.au=Lee,%20Jiale&rft.date=2024-09-09&rft.volume=12&rft.issue=36&rft.spage=13427&rft.epage=13437&rft.pages=13427-13437&rft.issn=2168-0485&rft.eissn=2168-0485&rft_id=info:doi/10.1021/acssuschemeng.4c01348&rft_dat=%3Cacs%3Ec801685219%3C/acs%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true