Strengthening the Metal Center of Co–N4 Active Sites in a 1D–2D Heterostructure for Nitrate and Nitrogen Reduction Reaction to Ammonia

Ammonia forms the fundamental agricultural constituent and vital energy provenance of a clean hydrogen mediator. Ammonia production leads to immense energy utilization and drastic environmental repercussion. It is a daunting task to design and synthesize competent catalysts for reduction of nitrogen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS sustainable chemistry & engineering 2023-04, Vol.11 (16), p.6191-6200
Hauptverfasser: Paul, Sourav, Sarkar, Sougata, Adalder, Ashadul, Kapse, Samadhan, Thapa, Ranjit, Ghorai, Uttam Kumar
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6200
container_issue 16
container_start_page 6191
container_title ACS sustainable chemistry & engineering
container_volume 11
creator Paul, Sourav
Sarkar, Sougata
Adalder, Ashadul
Kapse, Samadhan
Thapa, Ranjit
Ghorai, Uttam Kumar
description Ammonia forms the fundamental agricultural constituent and vital energy provenance of a clean hydrogen mediator. Ammonia production leads to immense energy utilization and drastic environmental repercussion. It is a daunting task to design and synthesize competent catalysts for reduction of nitrogenous species (nitrogen or nitrates, by the nitrogen reduction reaction (NRR) or nitrate reduction reaction (NO3RR) process, respectively) into ammonia. Cobalt­(II) phthalocyanine (CoPc) nanotubes were effectively wrapped by 2D graphene sheets to produce a (1D–2D) heterostructure catalyst, which plays the role of a competent electrocatalyst for the NRR as well as NO3RR. The electrocatalyst showed an ammonia yield rate and a Faradaic efficiency of 58.82 μg h–1 mg–1 cat and 95.12%, respectively, for the NO3RR and for NRR 143.38 μg h–1 mg–1 cat and 43.69%, respectively. Bader charge investigation revealed the transport of charge to Co–N4 active sites from reduced graphene oxide (RGO), which aids during the production of intermediates NNH* for nitrogen reduction and *NOH for nitrate reduction along with suppression of the parasitic HER, thereby demonstrating good selectivity and Faradaic efficiency. This work showcases new mechanistic discernment about the role of work function, interfacial charge transport, and electrocatalytic overpotential for the nitrogen/nitrate reduction reaction.
doi_str_mv 10.1021/acssuschemeng.2c07114
format Article
fullrecord <record><control><sourceid>acs</sourceid><recordid>TN_cdi_acs_journals_10_1021_acssuschemeng_2c07114</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b931441970</sourcerecordid><originalsourceid>FETCH-LOGICAL-a197t-5abacb78c4502922a86e06a02238d0a2d447fac19ffcb24bdd0665e537bda0da3</originalsourceid><addsrcrecordid>eNpVkMtKAzEUhoMoWLSPIJwXmJpk7ssyVSvUClbXw5nkTDulTWCSce3arW_ok5jaLvRs_g_ODT7GbgSfCC7FLSrnBqc2tCeznkjFcyGSMzaSIisinhTp-R--ZGPntjxUWcayECP2ufJ9WPQbMp1ZQ0h4Io87qMh46sG2UNnvj69lAlPlu3eCVefJQWcAQcxCR85gTmHUOt8Pyg89QWt7WHa-R0-ARv-yXZOBF9JhpLMHwiN4C9P93poOr9lFiztH41Nesbf7u9dqHi2eHx6r6SJCUeY-SrFB1eSFSlIuSymxyIhnyKWMC81R6iTJW1SibFvVyKTRmmdZSmmcNxq5xviKiePdoK7e2qE34VsteH3wWf_zWZ98xj-5nnCy</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Strengthening the Metal Center of Co–N4 Active Sites in a 1D–2D Heterostructure for Nitrate and Nitrogen Reduction Reaction to Ammonia</title><source>ACS Publications</source><creator>Paul, Sourav ; Sarkar, Sougata ; Adalder, Ashadul ; Kapse, Samadhan ; Thapa, Ranjit ; Ghorai, Uttam Kumar</creator><creatorcontrib>Paul, Sourav ; Sarkar, Sougata ; Adalder, Ashadul ; Kapse, Samadhan ; Thapa, Ranjit ; Ghorai, Uttam Kumar</creatorcontrib><description>Ammonia forms the fundamental agricultural constituent and vital energy provenance of a clean hydrogen mediator. Ammonia production leads to immense energy utilization and drastic environmental repercussion. It is a daunting task to design and synthesize competent catalysts for reduction of nitrogenous species (nitrogen or nitrates, by the nitrogen reduction reaction (NRR) or nitrate reduction reaction (NO3RR) process, respectively) into ammonia. Cobalt­(II) phthalocyanine (CoPc) nanotubes were effectively wrapped by 2D graphene sheets to produce a (1D–2D) heterostructure catalyst, which plays the role of a competent electrocatalyst for the NRR as well as NO3RR. The electrocatalyst showed an ammonia yield rate and a Faradaic efficiency of 58.82 μg h–1 mg–1 cat and 95.12%, respectively, for the NO3RR and for NRR 143.38 μg h–1 mg–1 cat and 43.69%, respectively. Bader charge investigation revealed the transport of charge to Co–N4 active sites from reduced graphene oxide (RGO), which aids during the production of intermediates NNH* for nitrogen reduction and *NOH for nitrate reduction along with suppression of the parasitic HER, thereby demonstrating good selectivity and Faradaic efficiency. This work showcases new mechanistic discernment about the role of work function, interfacial charge transport, and electrocatalytic overpotential for the nitrogen/nitrate reduction reaction.</description><identifier>ISSN: 2168-0485</identifier><identifier>EISSN: 2168-0485</identifier><identifier>DOI: 10.1021/acssuschemeng.2c07114</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS sustainable chemistry &amp; engineering, 2023-04, Vol.11 (16), p.6191-6200</ispartof><rights>2023 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-0537-598X ; 0000-0002-6215-8183 ; 0000-0001-9916-6796 ; 0000-0002-9285-0525</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acssuschemeng.2c07114$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acssuschemeng.2c07114$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Paul, Sourav</creatorcontrib><creatorcontrib>Sarkar, Sougata</creatorcontrib><creatorcontrib>Adalder, Ashadul</creatorcontrib><creatorcontrib>Kapse, Samadhan</creatorcontrib><creatorcontrib>Thapa, Ranjit</creatorcontrib><creatorcontrib>Ghorai, Uttam Kumar</creatorcontrib><title>Strengthening the Metal Center of Co–N4 Active Sites in a 1D–2D Heterostructure for Nitrate and Nitrogen Reduction Reaction to Ammonia</title><title>ACS sustainable chemistry &amp; engineering</title><addtitle>ACS Sustainable Chem. Eng</addtitle><description>Ammonia forms the fundamental agricultural constituent and vital energy provenance of a clean hydrogen mediator. Ammonia production leads to immense energy utilization and drastic environmental repercussion. It is a daunting task to design and synthesize competent catalysts for reduction of nitrogenous species (nitrogen or nitrates, by the nitrogen reduction reaction (NRR) or nitrate reduction reaction (NO3RR) process, respectively) into ammonia. Cobalt­(II) phthalocyanine (CoPc) nanotubes were effectively wrapped by 2D graphene sheets to produce a (1D–2D) heterostructure catalyst, which plays the role of a competent electrocatalyst for the NRR as well as NO3RR. The electrocatalyst showed an ammonia yield rate and a Faradaic efficiency of 58.82 μg h–1 mg–1 cat and 95.12%, respectively, for the NO3RR and for NRR 143.38 μg h–1 mg–1 cat and 43.69%, respectively. Bader charge investigation revealed the transport of charge to Co–N4 active sites from reduced graphene oxide (RGO), which aids during the production of intermediates NNH* for nitrogen reduction and *NOH for nitrate reduction along with suppression of the parasitic HER, thereby demonstrating good selectivity and Faradaic efficiency. This work showcases new mechanistic discernment about the role of work function, interfacial charge transport, and electrocatalytic overpotential for the nitrogen/nitrate reduction reaction.</description><issn>2168-0485</issn><issn>2168-0485</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpVkMtKAzEUhoMoWLSPIJwXmJpk7ssyVSvUClbXw5nkTDulTWCSce3arW_ok5jaLvRs_g_ODT7GbgSfCC7FLSrnBqc2tCeznkjFcyGSMzaSIisinhTp-R--ZGPntjxUWcayECP2ufJ9WPQbMp1ZQ0h4Io87qMh46sG2UNnvj69lAlPlu3eCVefJQWcAQcxCR85gTmHUOt8Pyg89QWt7WHa-R0-ARv-yXZOBF9JhpLMHwiN4C9P93poOr9lFiztH41Nesbf7u9dqHi2eHx6r6SJCUeY-SrFB1eSFSlIuSymxyIhnyKWMC81R6iTJW1SibFvVyKTRmmdZSmmcNxq5xviKiePdoK7e2qE34VsteH3wWf_zWZ98xj-5nnCy</recordid><startdate>20230424</startdate><enddate>20230424</enddate><creator>Paul, Sourav</creator><creator>Sarkar, Sougata</creator><creator>Adalder, Ashadul</creator><creator>Kapse, Samadhan</creator><creator>Thapa, Ranjit</creator><creator>Ghorai, Uttam Kumar</creator><general>American Chemical Society</general><scope/><orcidid>https://orcid.org/0000-0003-0537-598X</orcidid><orcidid>https://orcid.org/0000-0002-6215-8183</orcidid><orcidid>https://orcid.org/0000-0001-9916-6796</orcidid><orcidid>https://orcid.org/0000-0002-9285-0525</orcidid></search><sort><creationdate>20230424</creationdate><title>Strengthening the Metal Center of Co–N4 Active Sites in a 1D–2D Heterostructure for Nitrate and Nitrogen Reduction Reaction to Ammonia</title><author>Paul, Sourav ; Sarkar, Sougata ; Adalder, Ashadul ; Kapse, Samadhan ; Thapa, Ranjit ; Ghorai, Uttam Kumar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a197t-5abacb78c4502922a86e06a02238d0a2d447fac19ffcb24bdd0665e537bda0da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Paul, Sourav</creatorcontrib><creatorcontrib>Sarkar, Sougata</creatorcontrib><creatorcontrib>Adalder, Ashadul</creatorcontrib><creatorcontrib>Kapse, Samadhan</creatorcontrib><creatorcontrib>Thapa, Ranjit</creatorcontrib><creatorcontrib>Ghorai, Uttam Kumar</creatorcontrib><jtitle>ACS sustainable chemistry &amp; engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Paul, Sourav</au><au>Sarkar, Sougata</au><au>Adalder, Ashadul</au><au>Kapse, Samadhan</au><au>Thapa, Ranjit</au><au>Ghorai, Uttam Kumar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strengthening the Metal Center of Co–N4 Active Sites in a 1D–2D Heterostructure for Nitrate and Nitrogen Reduction Reaction to Ammonia</atitle><jtitle>ACS sustainable chemistry &amp; engineering</jtitle><addtitle>ACS Sustainable Chem. Eng</addtitle><date>2023-04-24</date><risdate>2023</risdate><volume>11</volume><issue>16</issue><spage>6191</spage><epage>6200</epage><pages>6191-6200</pages><issn>2168-0485</issn><eissn>2168-0485</eissn><abstract>Ammonia forms the fundamental agricultural constituent and vital energy provenance of a clean hydrogen mediator. Ammonia production leads to immense energy utilization and drastic environmental repercussion. It is a daunting task to design and synthesize competent catalysts for reduction of nitrogenous species (nitrogen or nitrates, by the nitrogen reduction reaction (NRR) or nitrate reduction reaction (NO3RR) process, respectively) into ammonia. Cobalt­(II) phthalocyanine (CoPc) nanotubes were effectively wrapped by 2D graphene sheets to produce a (1D–2D) heterostructure catalyst, which plays the role of a competent electrocatalyst for the NRR as well as NO3RR. The electrocatalyst showed an ammonia yield rate and a Faradaic efficiency of 58.82 μg h–1 mg–1 cat and 95.12%, respectively, for the NO3RR and for NRR 143.38 μg h–1 mg–1 cat and 43.69%, respectively. Bader charge investigation revealed the transport of charge to Co–N4 active sites from reduced graphene oxide (RGO), which aids during the production of intermediates NNH* for nitrogen reduction and *NOH for nitrate reduction along with suppression of the parasitic HER, thereby demonstrating good selectivity and Faradaic efficiency. This work showcases new mechanistic discernment about the role of work function, interfacial charge transport, and electrocatalytic overpotential for the nitrogen/nitrate reduction reaction.</abstract><pub>American Chemical Society</pub><doi>10.1021/acssuschemeng.2c07114</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-0537-598X</orcidid><orcidid>https://orcid.org/0000-0002-6215-8183</orcidid><orcidid>https://orcid.org/0000-0001-9916-6796</orcidid><orcidid>https://orcid.org/0000-0002-9285-0525</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2168-0485
ispartof ACS sustainable chemistry & engineering, 2023-04, Vol.11 (16), p.6191-6200
issn 2168-0485
2168-0485
language eng
recordid cdi_acs_journals_10_1021_acssuschemeng_2c07114
source ACS Publications
title Strengthening the Metal Center of Co–N4 Active Sites in a 1D–2D Heterostructure for Nitrate and Nitrogen Reduction Reaction to Ammonia
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T05%3A36%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strengthening%20the%20Metal%20Center%20of%20Co%E2%80%93N4%20Active%20Sites%20in%20a%201D%E2%80%932D%20Heterostructure%20for%20Nitrate%20and%20Nitrogen%20Reduction%20Reaction%20to%20Ammonia&rft.jtitle=ACS%20sustainable%20chemistry%20&%20engineering&rft.au=Paul,%20Sourav&rft.date=2023-04-24&rft.volume=11&rft.issue=16&rft.spage=6191&rft.epage=6200&rft.pages=6191-6200&rft.issn=2168-0485&rft.eissn=2168-0485&rft_id=info:doi/10.1021/acssuschemeng.2c07114&rft_dat=%3Cacs%3Eb931441970%3C/acs%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true